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Abstract

Edgeworth expansions are known to be useful for approximating probability distributions

and moments. In our case, we exploit the expansion in the context of models of double selection

embedded in a trivariate normal structure. We assume bivariate normality among the random

disturbance terms in the two selection equations but allow the distribution of the disturbance

term in the outcome equation to be free. This sets the stage for a control function approach to

correction of selectivity bias that a�ords tests for the more common trivariate normality speci�-

cation. Other recently proposed methods for handling multiple outcomes are Multinomial Logit

based selection correction models. An empirical example is presented to document the di�er-

ences among the results obtained from our selectivity correction approach, trivariate normality

speci�cation and Multinomial Logit based selection correction models.
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1 Introduction

Since the early work on selectivity pioneered by Heckman (1976, 1979) and Lee (1976, 1979), the

control function approach has remained as the most popular and versatile method in parametric

as well as semi-parametric models of selection. Unlike parametric models that can be reconciled

with optimizing behavior, semi-parametric models do not invoke a behavioral interpretation of the

control function. Their appeal rests in their ability to circumvent the misspeci�cation problems

associated with the strong parametric assumptions. When multiple sources of selection are present,

semi-parametric approaches require additional assumptions. These in turn impose restrictions on

the behavioral model, and usher in a new set of tradeo�s in gauging the merits of parametric vs.

semi-parametric methods.

In this paper we return to the double selection version of the Heckman-Lee parametric frame-

work which is studied by Tunali (1986). To solve the problem, Tunali (1986) uses a common choice

structure where he assumes trivariate normality among the random disturbances of the two selection

equations and the regression (partially observed outcome) equation. The present paper uses the

same common structure but relaxes the trivariate normality assumption following the Edgeworth

expansion approach of Lee (1982). In obtaining our correction, we do not impose any condition on

the form of the distribution of the random disturbance in the regression equation, but conveniently

assume bivariate normality between the random disturbances of the two selection equations. Al-

though quasi-maximum likelihood methodology o�ers some limited justi�cation for defending this

distributional assumption, we do not pursue the more appealing alternatives developed in Ruud

(1983) and Stoker (1986).

As documented in Miller (2011), Edgeworth expansion was introduced by Edgeworth (1905)

and dubbed "Edgeworth's series" by Elderton (1906). H. Cramer established the theory of "Edge-

worth's series" in the 1920s and summarized it later in Cramer (1937). The presently popular term

Edgeworth expansion was used for the �rst time by David et al. (1951). The topic has received

considerable attention in statistics and econometrics. A sampling of the contributions may be found

in Bhattacharya and Rao (1976), Bhattacharya and Ghosh (1978), Rothenberg (1983) and Kolassa

and McCullagh (1990).

A double selection problem may arise due to interdependent choices of distinct decision makers
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or due to a simultaneous or sequential decision undertaken by a single party. Although the problem

can be tackled by employing other methodologies, we opt for Edgeworth expansion because it can

be situated within a behavioral model and yields a richer functional form for selectivity correc-

tion. In particular skewed and kurtic distributions can be handled with ease. This form nests the

version obtained under trivariate normality and provides a test of that restriction. We illustrate

our Edgeworth expansion based correction for double selection in the empirical context of Tunali

and Baslevent (2006), where the goal is to estimate a wage equation for married women subject to

participation and mode of employment choices. Since less than 14 percent of the married women

participate and an even smaller subset works for wages, selectivity is likely to be a serious problem.

We also brie�y revisit the empirical context in Tunali (1986) to address computational issues that

arise during estimation.

Multinomial Logit based selection correction models have also been developed for the purpose

of handling two or more selection equations [see Lee (1983), Dubin and McFadden (1984), Dahl

(2002)]. These models imply severe restrictions on behavior because the random disturbances of

the selection equations are assumed to be independent. Our model can only handle two selection

equations but it has the advantage of allowing interdependence. Another advantage of our model

is the ease of accommodation of additional structure in the behavioral model. In the example we

pursue in some detail there are four outcomes: nonparticipation, self-employement, wage employ-

ment and unemployment. In e�ect unemployed individuals have opted for participation, but their

employment mode is not known. This structure can easily be handled in our model, but not in

a Multinomial Logit based alternative. Nevertheless we present the results obtained from some

well-known Multinomial Logit based selection models to gauge the appeal of the various models

empirically.

Das et al. (2003) propose the use of series expansions along the lines of Ahn and Powell (1993)

under multiple selection. These models exploit power series and smooth piecewise polynomials in

the propensity scores (conditional choice probabilities) which can be nonparametrically estimated.

To our knowledge Dahl (2002) is the only paper that has implemented this idea. We discuss his

methodology in some detail and apply a version of it in our empirical investigation.

In Section 2, we develop the theoretical framework. We start with a generic de�nition of the

double selection problem, then discuss the our parametric solution strategy and its merits. We then
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introduce the Trivariate Edgeworth expansion, outline the derivation of the selectivity correction

terms and describe the estimation procedure. The formal derivations are collected in the Appendix.

In Section 3, we provide an empirical example which illustrates our selectivity correction methodol-

ogy. In Section 4, we revisit the example using alternative approaches relying on Multinomial Logit

distribution. We conclude in Section 5 with a brief summary and some closing remarks.

2 Theoretical Framework

2.1 Double Selection Problem

We take as our point of departure the following generic representation of the double selection

problem:

y∗1i = β
′
1X1i + σ1u1i (�rst selection rule), (1)

y∗2i = β
′
2X2i + σ2u2i (second selection rule), (2)

y3i = β
′
3X3i + σ3u3i (regression equation). (3)

For k = 1, 2, 3 and individual i, Xki's are vectors of explanatory variables, βk's are the corre-

sponding vectors of unknown coe�cients, uki's are the random disturbances, and σk's are unknown

scale parameters. The variables y∗1i and y
∗
2i are unobserved continuous random variables, but with-

out loss of generality, functions of them classify individuals to di�erent categories according to a

sample selection regime denoted by Λ. From now on, we drop the observation subscript i to avoid

notational clutter. Let X = X1 ∪X2 ∪X3.
1 The feature of interest is

E(y3 | X,Λ) = β
′
3X3 + σ3E(u3 | X,Λ). (4)

Selectivity is manifested via E(u3 | X,Λ) 6= 0, which renders conventional linear regression

inconsistent. The goal is to consistently estimate β3 conditional on the sample selection regime

1Our notation accommodates the use of di�erent sets of explanatory variables in the two selection equations and
the outcome equation. When alternative speci�c variables are present, it is natural for X1 and X2 to be di�erent.
Justi�cation of exclusions that would distinguish X3 from X1 and X2 would rest on context speci�c arguments.
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Λ. Parametric approaches exploit additional assumptions which yield a functional form for E(u3 |

X,Λ), so that adjustment for selectivity can be implemented. It is customary to assume that the

random disturbance vector (u1, u2, u3) is distributed independently across individuals and of X.

Once the selectivity adjustment component is consistently estimated, linear regression becomes a

viable choice.

In the cases covered in Tunali (1986), the sample selection regime can be expressed as Λ =

{D1, D2} where D1 and D2 are two dichotomous variables indicating the outcomes of two selection

rules:

D1 =

 1 if y∗1 > 0

0 if y∗1 6 0

 and D2 =

 1 if y∗2 > 0

0 if y∗2 6 0

 . (5)

Note that the support of (y∗1, y
∗
2) is broken down into four mutually exclusive regions which

results in the four-way classi�cation given in the 2×2 table below, where Sj is the set of individuals

in the jth subsample for j = 1, 2, 3, 4.

Figure 1: Possible Double Selection Outcomes
D2 = 0 D2 = 1

D1 = 0 S1 S2
D1 = 1 S3 S4

The case in which we observe all the cells of 2 × 2 table yields a complete classi�cation of the

original sample. However, incomplete classi�cation cases, in which only three or two distinct cells

of 2 × 2 table are observed, are also possible. Various sample selection regimes which �t this set-

up are discussed in Tunali (1986). Without loss of generality, he assumes that y3 is observed for

the subsample S4, so that the conditional expectation function of interest given in Equation (4)

specializes to:

E(y3 | X,D1 = 1, D2 = 1) = β
′
3X3 + σ3E(u3| X,D1 = 1, D2 = 1)

= β3X3 + σ3E(u3 | σ1u1 > −β
′
1X1, σ2u2 > −β

′
2X2). (6)

The conditioning on X is implicit throughout, but we drop it for clarity. Tunali (1986) assumes

that u1, u2 and u3 have a trivariate normal distribution and sets σ1 = σ2 = 1. The variance

normalization is an innocuous assumption for his set-up because of the nature of of Λ: truncation
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with respect to u1 does not involve u2 (and vice versa). However, for other choices of Λ, this is no

longer the case. In obtaining our solution, we relax both restrictions. In particular, we let the form

of the distribution of the random disturbance in the regression equation be free. Under our weaker

distributional assumption, we denote the disturbance term of the regression equation by ũ3 instead

of u3. We assume that ũ3 has zero expectation and unit variance conditional on X. However, we

maintain that u1 and u2 have a standard bivariate normal distribution.

In Section 2.3, we set σ1 = σ2 = 1 for convenience and give the functional form of E(ũ3 |

u1 > −β
′
1X1, u2 > −β2X2) obtained via an Edgeworth expansion. That is, we use the exclusive

selection rule set-up of Tunali (1986) and provide a strategy for consistent estimation of β3 on

subsample S4. The methodology can easily be adopted to the other cases covered in Tunali (1986).

Presently, we situate our approach within a broader context and justify our choice. We relax the

variance restriction later, when we confront the empirical problem in Tunali and Baslevent (2006).

2.2 Solution Strategy

Given our distributional assumptions, numerous approaches can be pursued. Kolassa (1997) o�ers

a broad list of series approximations and discusses the computational implications. One commonly

used approximation is the Normal Inverse Gaussian, examined in detail in Eriksson et al. (2004).

This method involves a partial speci�cation: the conditional expectation is written without spec-

ifying the joint distribution fully. Even though this method works well for the univariate case,

its behavior is not known in the multivariate case. Edgeworth expansion also involves a partial

speci�cation, but is easier to apply.

For our purposes, the most appealing characteristic of Edgeworth expansion is the fact that it

nests the conventional trivariate normality assumption. Under trivariate normality, the conditional

expectation function E(u3 | u1, u2) becomes a linear function of u1 and u2. Consequently trivariate

normality allows us to express E(u3 | Λ) using only the �rst and second central moments. Edgeworth

expansion provides an improvement because higher order moments are introduced in obtaining E(ũ3

| Λ). In the derivation of our Edgeworth expansion, we also use the third and fourth central moments.

These allow us to relax (and test) the conventional restrictions imposed on the skewness and kurtosis

of the distribution.
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2.3 Trivariate Edgeworth Expansion

Let f(u1, u2, ũ3) be the joint density of u1, u2 and ũ3. It is helpful to keep in mind that u1, u2 and

ũ3 are the random disturbances of Equations (1) - (3). The triplet (u1i, u2i, ũ3i) is assumed to be

independently and identically distributed across individuals with zero mean vector and covariance

matrix

Σ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 ,
and is independent of X. For brevity, we suppress the conditioning on covariate matrix X and the

individual subscript i throughout this subsection.

We denote the standard trivariate normal density either by STVN (ρ12, ρ13, ρ23) or by g(u1, u2, u3)

and the standard bivariate normal density either by SBVN (ρ12) or by g(u1, u2). Under some general

conditions given by Chambers (1967) and conditional on existence of all the moments of u1, u2,

and ũ3, the trivariate density f(u1, u2, ũ3) can be expanded in terms of a series of derivatives of

g(u1, u2, u3):

f(u1, u2, ũ3) = g(u1, u2, u3) +
∑

r+s+p≥3

(−1)r+s+p

r!s!p!
ArspD

r
u1D

s
u2D

p
u3g(u1, u2, u3), (7)

where Arsp's are functions of the moments of f(u1, u2, ũ3), and

Dr
u1D

s
u2D

p
u3g(u1, u2, u3) =

∂r+s+pg(u1, u2, u3)

∂ur1∂u
s
2∂u

p
3

. (8)

The iterative relation between the derivatives in Equation (8) can be captured with the help of

Hermite polynomials. In our case, a bivariate version is su�cient. The bivariate Hermite polynomial

of (r, s)th order, denoted by Hrs(u1, u2), satis�es

Dr
u1D

s
u2g(u1, u2) = (−1)r+sHrs(u1, u2)g(u1, u2). (9)

In other words, Hrs(u1, u2) is a function of the ratio of (r, s)th to (0, 0)th order derivatives of

g(u1, u2). With the help of Equation (9), we can deduce from Equation (7) that the joint density
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of u1 and u2 can be written as:

h(u1, u2) =

1 +
∑
r+s≥3

1

r!s!
Ars0Hrs(u1, u2)

 g(u1, u2). (10)

Employing the usual practice in the related literature (see Lee (1982); Lee (1984); Lahiri and

Song (1999)), we consider terms up to 4th order (r + s+ p = 4 in Equation (7)). This amounts to

truncating the series approximation. The truncated series is known as a Gram Charlier Expansion

for the univariate case. For the bivariate case, it is called as a Type AaAa surface in Pretorius (1930)

and a Type AA surface in Mardia (1970). For the trivariate case, we may use shorter designation

provided in Mardia (1970) as our guide and term the truncated expansion as a Type AAA surface.

The truncation eases the computational burden in two ways. First, it reduces the number

of terms we have to consider. Second, we know that for the Type AAA surface (r + s + p ≤ 4),

Arsp = Krsp where Krsp's denote trivariate cumulants (Lahiri and Song (1999)). Lee (1984) exploits

the truncated version of Equation (10) for deriving a test for bivariate normality while Lahiri and

Song (1999) use Equation (7) to obtain a test for trivariate normality. Our approach is di�erent in

the sense that we focus on correction for selectivity.

Returning to the generic representation of the double selection problem, recall that we assume

(u1, u2) ∼ SBVN (ρ12) in Equations (1) and (2), but allow the distribution of ũ3 to be free with

E(ũ3) = 0 and V (ũ3) = 1 in Equation (3) and set σ1 = σ2 = 1. Extending the steps given in

Mardia (1970), we get the following operationally useful formula for the Type AAA surface:

E(ũ3 | u1, u2) = K101H10(u1, u2) +K011H01(u1, u2) +
1

2
K201H20(u1, u2)

+
1

2
K021H02(u1, u2) +K111H11(u1, u2) +

1

6
K301H30(u1, u2)

+
1

6
K031H03(u1, u2) +

1

2
K211H21(u1, u2) +

1

2
K121H12(u1, u2) (11)
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Equivalently,

E(ũ3 | u1, u2) =
1

1− ρ212
[(ρ13 − ρ12ρ23)u1 + (ρ23 − ρ12ρ13)u2] +

1

2
K201H20(u1, u2)

+
1

2
K021H02(u1, u2) +K111H11(u1, u2) +

1

6
K301H30(u1, u2)

+
1

6
K031H03(u1, u2) +

1

2
K211H21(u1, u2) +

1

2
K121H12(u1, u2) (12)

The derivation is provided in Appendix 6.1. Appendix 6.2 gives explicit expressions for the bivariate

Hermite polynomials in Equation (11), and Appendix 6.3 presents derivations of moments of the

truncated SBVN distribution up to the third order.2

Incorporating the explicit formulas for the Hermite polynomials into Equation (12) and using

the moment formulas of the truncated SBVN distribution, we obtain:

E(ũ3 | u1 > −β
′
1X1, u2 > −β2X2) = ρ13λ1 + ρ23λ2 +

1

2
K201λ3 +K111λ4 +

1

2
K021λ5

+
1

6
K301λ6 +

1

6
K031λ7 +

1

2
K211λ8 +

1

2
K121λ9. (13)

Explicit formulas of λ's are provided in Appendix 6.4. Note that λ1 and λ2 are the terms given in

Tunali (1986) and omission of the remaining terms in Equation (13) corresponds to the standard

trivariate normality speci�cation.

In theory, we can exploit Equation (10) and use an approximation for the bivariate component,

h(u1, u2) to the same order (r + s = 4), instead of assuming standard bivariate normality. How-

ever, this will add 9 terms to the denominator of our conditional expectation. Since each of these

terms includes a di�erent cumulant, the problem quickly becomes computationally intractable. We

therefore rely on the SBVN distribution. Two strands in the econometrics literature provide the-

oretical justi�cation for our apparently cavalier approach to the speci�cation of the distribution of

the selection equation disturbances. First, as Ruud (1983) and Stoker (1986) have shown, slope

coe�cients of index-function models can be consistently estimated up to a factor of proportionality

using any commonly used technique like probit or logit. Second is the work on quasi maximum

2Our moment derivations of the truncated SBVN distribution up to the second order corroborate with the
formulas in Henning and Henningsen (2007), but di�er from Rosenbaum (1961). In our view, Rosenbaum
(1961) made a sign error while calculating integrals. Besides, Henning and Henningsen (2007) cross-check
their formulas using numerical integration and Monte Carlo simulation.
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likelihood methodology: If the correct speci�cation of the distribution is in the linear exponential

family and we incorrectly specify the model by using another distribution from that family, we still

get consistent estimates.

With Equation (13) in hand, the regression equation may be expressed as

y3 = β3X3 + γ1λ1 + γ2λ2 + γ3λ3 + γ4λ4 + γ5λ5 + γ6λ6 + γ7λ7 + γ8λ8 + γ9λ9 + ν3 (14)

where the new random disturbance ν3 has the desired property E(ν3 | u1 > −β
′
1X1, u2 > −β2X2) =

0 in view of the fact that ν3 = ũ3−E(ũ3 | Λ). As seen from the formulas of λ's in Appendix 6.4, the

new regression equation is highly non-linear. Therefore, adopting the practice in the literature, we

rely on two-step estimation procedure provided in Heckman (1979) to estimate it. In the �rst step,

we target the parameters of the selection equations (1) - (2) and maximize the relevant likelihood

function (which depends on Λ, the sample selection regime).3 This allows us to form consistent

estimates of the λ's. We use the estimated λ̂'s as additional regressors and �t Equation (14) using

linear regression on the subsample of individuals in S4 to estimate β3 and γ's. Since generated

regressors are involved, we take heteroscedasticity into account and report Hubert-White standard

errors. NOTE: We need to generate the consistent variance-covariance matrix here!!

We may refer to the λ̂'s as selectivity correction terms. Then, we can test for the presence

of selectivity bias by testing joint signi�cance of all selectivity correction terms, λ̂1, λ̂2, ..., λ̂9.

Furthermore, by setting γ3 = γ4 = ... = γ9 = 0 we get a test of the conventional trivariate

normality speci�cation. Both tests are conducted under the maintained assumption that the random

disturbances in the two selection equations are bivariate normally distributed. The latter test can

also be thought as a test for linearity of the conditional expectation of ũ3 given u1 and u2.

3 Application

3.1 Problem

We illustrate our methodology in the context of the empirical work undertaken in Tunali and

Baslevent (2006). The data come from October 1988 Household Labor Force Survey in Turkey. The

3The formation of the likelihood function according to di�erent sample selection regimes is explained in
detail by Tunali (1986).
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working sample consists of 8, 962 married women between 20 − 54 years old who reside in urban

areas (population > 20, 000), are not in school and identi�ed as the only wife of the household head.

There are four labor force participation categories in the data set: 7, 770 non-participants, 745 wage

workers (or regular/casual wage and salary earners), 181 self-employed which include employers,

own-account work and unpaid family workers, and 266 unemployed. The ultimate goal of the paper

is to estimate labor supply elasticities for wage workers. This calls for estimation of a wage equation

on a subsample of wage workers which constitute less than 10 percent of the full sample. Hence

there is good reason to take selection into consideration.

Tunali and Baslevent (2006) assume that home-work (or non-participation), self-employment

and wage work utilities can be expressed as follows.

Home-work utility : U∗0 = θ
′
0z + υ0, (15)

Self-employment utility : U∗1 = θ
′
1z + υ1, (16)

Wage work utility : U∗2 = θ
′
2z + υ2, (17)

where z is a vector of observed variables, θj 's are the corresponding vectors of unknown coe�cients

and υj 's are the random disturbances. Assuming that individuals choose the state with highest

utility, their decisions can be captured using the utility di�erences:

y∗1 = U∗1 − U∗0 = (θ
′
1 − θ

′
0)z + (υ1 − υ0) = β

′
1z + σ1u1, (18)

y∗2 = U∗2 − U∗1 = (θ
′
2 − θ

′
1)z + (υ2 − υ1) = β

′
2z + σ2u2. (19)

This pair of selection equations has the same form as the ones in Equations (1) - (2) with

X1 = X2 = z. Note that y∗1 can be expressed as the propensity to be self-employed rather than

being a non-participant and y∗2 as the incremental propensity to engage in wage work rather than

self-employment. Then, y∗1 + y∗2 gives the propensity to engage in wage work over home-work. The

preferences of unemployed women over employment options is not known, so Tunali and Baslevent

(2006) follow Magnac (1991) and de�ne the unemployed as people obtaining higher utility either

from self-employment or wage work relative to home-work. Under this assumption, the four way

classi�cation observed in the sample arises as follows:
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LFP =



0 = home-work, if y∗1 < 0 and y∗1 + y∗2 < 0,

1 = self-employment, if y∗1 > 0 and y∗2 < 0,

2 = wage labor, if y∗2 > 0 and y∗1 + y∗2 > 0,

3 = unemployed, if y∗1 > 0 or y∗1 + y∗2 > 0.


. (20)

The sample selection regime is given by Λ = {LFP}. Note that in this case the support of

(y∗1, y
∗
2) is broken down into three mutually exclusive regions, which respectively correspond to

LFP = 0, 1, and 2. The region for LFP = 3 is the union of those for LFP = 1 and 2. We see that

the classi�cation in our sample is obtained via a pair from the triplet {y∗1, y∗2, y∗1 + y∗2}. Suppose we

were to normalize the variances of y∗1 and y∗1 + y∗2 to 1, but this has an implication for the variance

of y∗2 (σ22 = −2ρ12). Thus the usual variance normalization is no longer innocuous. We may apply

the normalization to one of σ11 = σ21 and σ22 = σ22, but must leave the other variance free to take

on any positive value. In our analysis, we take σ11 = 1 and let σ22 be free. In the �rst step, we rely

on maximum likelihood estimation and obtain consistent estimates of β1, β2, ρ12 and σ2 subject to

σ1 = 1. The likelihood function is given by

L =
∏

LFP=0

P0

∏
LFP=1

P1

∏
LFP=2

P2

∏
LFP=3

P3, (21)

where Pj = Pr(LFP = j) for j = 0, 1, 2, 3. There are two restrictions on the P ′js : (i) P0 + P1 +

P2 = 1, and (ii) P3 = 1 − P0. The explicit de�nitions of P ′js are provided in Appendix 6.5 where

the methodology given in Section 2.3 is modi�ed to handle the current case.

The regression equation for this problem is a Mincer-type wage equation obtained by setting

y3 = log(wage) in Equation (3) where X3 includes human capital variables and labor market

characteristics:

log(wage) = β
′
3X3 + σ3u3. (22)

The aim is to estimate β3 for wage workers, on the subsample with LFP = 2. After forming the

estimates of selectivity correction terms via �rst step estimates, we run a linear regression equation

with 9 selectivity correction terms in the second step, as shown in Equation (14).
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Table 1: Sample Means (Standard Deviations) by Labor Force Participation Status

Variable
Full

Sample
Non-

participant
Self-

employed
Wage
Worker

Un-
employed

Own wage - - -
1.39

(3.17) -

Age 33.29 33.41 34.28 32.82 30.65

Age Squared/100 11.75 11.86 12.37 11.18 9.84

Experience 20.29 20.82 21.31 15.76 16.93

Experience Squared/100 4.87 5.08 5.26 3.11 3.39

Illiterate (Reference) 0.25 0.27 0.21 0.055 0.13

Literate without a Diploma 0.090 0.095 0.12 0.034 0.071

Elementary School 0.49 0.52 0.47 0.22 0.48

Middle School 0.058 0.055 0.10 0.060 0.094

High School 0.087 0.059 0.072 0.35 0.20

University 0.030 0.0069 0.022 0.28 0.023

Husband Self-employed 0.33 0.35 0.39 0.16 0.18

Children Aged 0− 2 0.26 0.26 0.18 0.22 0.22

Children Aged 3− 5 0.34 0.35 0.28 0.27 0.34

Female Children aged 6− 14 0.41 0.42 0.49 0.32 0.36

Male Children aged 6− 14 0.44 0.45 0.49 0.34 0.43

Extended Household 0.12 0.13 0.14 0.11 0.079

Ext. HH Ö Children Aged 0− 2 0.029 0.029 0.028 0.031 0.019

Ext. HH Ö Children Aged 3− 5 0.036 0.036 0.033 0.039 0.019

Ext. HH Ö Female Ch. Aged 6− 14 0.045 0.046 0.044 0.032 0.030

Ext. HH Ö Male Ch. Aged 6− 14 0.047 0.049 0.050 0.039 0.030

Share of Textiles 0.31 0.31 0.39 0.30 0.31

Share of Agriculture 0.17 0.18 0.20 0.15 0.19

Share of Finance 0.060 0.059 0.053 0.064 0.056

Migration Rate 0.024 0.023 0.021 0.035 0.018

Marmara (Reference) 0.35 0.35 0.32 0.37 0.28

Aegean 0.11 0.11 0.10 0.14 0.21

South 0.12 0.12 0.26 0.099 0.13

Central 0.19 0.18 0.10 0.23 0.17

North West 0.040 0.037 0.028 0.055 0.075

East 0.078 0.081 0.088 0.044 0.086

South East 0.081 0.087 0.088 0.039 0.015

North East 0.033 0.034 0.0055 0.027 0.041

Population 200, 000 or more 0.67 0.66 0.69 0.74 0.60

Population 1 million or more 0.51 0.50 0.43 0.61 0.46

Share of Welfare Party 0.073 0.074 0.059 0.062 0.058

Share of Left of Center 0.35 0.35 0.33 0.36 0.36

Sample size 8, 962 7, 770 181 745 266
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3.2 Results

The list of variables and descriptive statistics broken down by subsample are given in Table 1. In

the �rst step of estimation, we imposed a single variance normalization (σ11 = 1) and restricted

the correlations and variances to their theoretical ranges using non-linear transformations. Since

sampling frame relies on strati�cation, the probability weights coming from the data were used.

Robust standard errors are reported throughout the section.

Table 2 provides the results of the �rst step. The estimate of the correlation coe�cient between the

random disturbances of the two selection equations, ρ̂12, is very close to −1, which suggests that

computational fragility is an issue. Evidently this is a weakness that our double selection model

shares with the broader class of multinomial probit models as discussed in Keane (1992). Since our

interests lie elsewhere, we do not dwell on the problem here.4 Detailed discussion of the results and

a sensitivity analysis which explores other variance restrictions can be found in Tunali and Baslevent

(2006). The negative sign of ρ̂12 is justi�ed by the argument that the unobserved characteristics

that make a woman more likely to choose self-employment rather than home-work, also make her

less likely to choose wage work over self-employment in Tunali and Baslevent (2006). We touch on

some of their substantive �ndings in Section 4.3 in order to compare and contrast them with the

�rst stage results of Multinomial Logit based selection correction models.

We proceed with our results from the second step which are collected in Table 3. Following

Tunali and Baslevent (2006), (i) we excluded 15 variables that appeared in the selection equations,

(ii) included a second degree polynomial in experience instead of the polynomial in age, and (iii)

dropped 10 observations due to missing wage information. We report the least squares estimates of

the wage equation in three columns, respectively without selectivity correction, with conventional

correction (corresponds to trivariate normality speci�cation), and with Edgeworth expansion based

correction. A Wald test for exclusion of all the selectivity correction terms yields strong evidence

in favor of non-random selection (p − value = 0.0006). Moreover, a Wald test of the restriction

γ3 = γ4 = ... = γ9 = 0 favors our Edgeworth expansion approach rather than conventional correction

(p− value = 0.0424).

4Keane (1992) investigates the issue of computational fragility in multinomial probit models and proposes using
alternative speci�c variables as well as exclusions in each selection equation. Since alternative speci�c variables are
not available, this venue is not a viable option in the present case.
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Table 2: Maximum Likelihood Bivariate Probit Estimates of Participation Equations
(Normalized Version)

Variable
First Selection Second Selection

Coe�cient Std. Error Coe�cient Std. Error

Age 0.077 0.066 −0.010 0.029

Age Squared/100 −0.124 0.096 0.024 0.041

Literate without a Diploma 0.256∗∗∗ 0.099 −0.185 0.122

Elementary School 0.124 0.085 −0.048 0.075

Middle School 0.471∗∗∗ 0.138 −0.194 0.187

High School 0.534 0.580 0.090 0.116

University 0.931 1.050 0.149 0.154

Husband Self-employed −0.081 0.242 −0.152∗ 0.092

Children Aged 0− 2 −0.178∗∗ 0.075 0.077 0.089

Children Aged 3− 5 −0.078 0.077 0.012 0.053

Female Children aged 6− 14 0.055 0.103 −0.075 0.094

Male Children aged 6− 14 0.031 0.089 −0.072 0.065

Extended Household 0.189 0.133 −0.167 0.130

Ext. HH Ö Children Aged 0− 2 0.096 0.181 −0.047 0.182

Ext. HH Ö Children Aged 3− 5 −0.058 0.178 0.091 0.149

Ext. HH Ö Female Ch. Aged 6− 14 −0.252 0.165 0.221 0.161

Ext. HH Ö Male Ch. Aged 6− 14 −0.083 0.161 0.103 0.137

Share of Textiles 0.058 0.242 0.172 0.153

Share of Agriculture −0.759∗ 0.432 0.952∗∗∗ 0.356

Share of Finance −3.686∗ 2.121 2.918 2.637

Migration Rate −3.642∗∗ 1.613 4.214∗∗∗ 1.515

Aegean −0.229 0.228 0.326∗ 0.180

South −0.038 0.101 −0.015 0.093

Central −0.508∗ 0.263 0.547∗ 0.292

North West −0.392 0.306 0.526∗∗ 0.262

East −0.381 0.233 0.424∗ 0.233

South East −0.291∗ 0.151 0.149 0.201

North East −0.850 0.546 0.970∗ 0.528

Population 200, 000 or more −5.969∗∗∗ 2.063 5.628∗∗ 2.857

Population 1 million or more −0.697 0.695 1.172∗∗ 0.508

Share of Welfare Party 0.114 0.088 −0.029 0.123

Share of Left of Center −0.160∗ 0.092 0.139 0.099

Constant −1.688 1.340 −0.242 0.643

σ11 1 [normalized]

σ22 0.358 (0.514)

ρ12 −0.971∗∗∗ (0.046)

Number of Observations 8, 962

Log-Likelihood Without Covariates −3, 247.25

Log-Likelihood With Covariates −2, 443.05

Notes: Robust standard errors are reported. ∗ is signi�cant at 10%; ∗∗ is signi�cant at 5%; ∗∗∗ is
signi�cant at 1%.
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Table 3: Least Squares Estimates of the Wage Equation

Variable
With Robust
Correction

With
Conventional
Correction

Without
Selectivity
Correction

Coef. Std.
Error

Coef. Std.
Error

Coef. Std.
Error

Experience 0.032∗∗∗ 0.012 0.034∗∗∗ 0.013 0.031∗∗ 0.013

Experience Squared/100 −0.064∗∗ 0.033 −0.072∗∗ 0.037 −0.064∗ 0.037

Literate without a Diploma −0.119 0.174 −0.080 0.181 −0.112 0.186

Elementary School −0.055 0.116 −0.028 0.120 −0.011 0.121

Middle School 0.215 0.149 0.256∗ 0.144 0.231∗ 0.125

High School 0.594∗∗∗ 0.191 0.437∗∗ 0.184 0.465∗∗∗ 0.119

University 1.254∗∗∗ 0.272 1.083∗∗∗ 0.250 1.038∗∗∗ 0.128

Share of Textiles −0.308∗∗ 0.150 −0.282∗∗ 0.143 −0.407∗∗∗ 0.122

Share of Agriculture 0.098 0.237 0.085 0.238 0.150 0.238

Share of Finance 3.437∗∗∗ 1.319 2.557∗∗ 1.225 4.241∗∗∗ 1.158

Aegean −0.135∗ 0.072 −0.169∗∗ 0.073 −0.131∗ 0.069

South 0.162∗∗ 0.081 0.172∗∗ 0.080 0.159∗ 0.082

Central 0.035 0.072 0.007 0.073 0.029 0.073

North West −0.151 0.100 −0.170∗ 0.099 −0.166∗ 0.096

East 0.109 0.114 0.096 0.115 0.142 0.113

South East 0.130 0.118 0.086 0.114 0.191∗ 0.100

North East −0.137 0.117 −0.210∗ 0.113 −0.129 0.115

λ̂1 −0.044 0.687 0.171 0.146

λ̂2 2.441 3.132 −0.458∗∗ 0.182

λ̂3 0.135 0.412

λ̂4 2.033 2.784

λ̂5 2.076 2.897

λ̂6 −0.060 0.215

λ̂7 0.625 1.006

λ̂8 0.595 1.291

λ̂9 −1.149 2.080

Constant −1.087∗∗ 0.519 −0.927∗∗∗ 0.345

Number of Observations 735 735 735

R2 0.387 0.378 0.367

Notes: Robust standard errors are reported. ∗ is signi�cant at 10%; ∗∗ is signi�cant at 5%; ∗∗∗ is
signi�cant at 1%.

In light of the �rst stage results, participation probability increases with education; furthermore,

wage work and self-employment orientations of participants di�er systematically. One would think

that all this sorting has implications for the estimates of the wage equation. Indeed, comparison of

the substantive results from the three models underscores the importance of proper adjustment for
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selection. According to our speci�cation, while the coe�cient of middle school becomes insigni�cant

(implying people having middle school education or less earn the same wage), high school and

university coe�cients increase. Evidently, the minority which opts for wage work is highly selective

in terms of unobservables and failure to account for this yields underestimation of the returns to

higher levels of education. With illiterates as the reference category, high school results in 81 percent

higher returns on average according to our Edgeworth expansion based correction whereas it is 55

percent on average under conventional correction. In the case of university graduates the contrast

is equally dramatic: 250 percent under our method, and 195 percent in the trivariate normality

speci�cation. According to our trusted estimates, average incremental returns are 21.9 percent per

additional year of high school and 28 percent per additional year of university education.

The other statistically signi�cant variables in the Edgeworth expansion based correction have

coe�cient estimates with magnitudes between those under random selection and under conventional

correction for non-random selection. Based on the our robust correction, a one percent increase in

the share of textile jobs is predicted decrease wages by 0.31 percent while a one percent increase

in share of �nance jobs increases wages by 3.4 percent. These e�ects are underestimated in the

trivariate normality speci�cation.

3.3 Multicollinearity

Another issue that arises in the context of our robust correction approach is the large standard

errors of individual selectivity correction terms (see Table 3). Letting R2
j for j = 1, 2, ..9 denote the

coe�cient of determination in the regression of λ̂j on the remaining selectivity correction terms,

we obtained values in the range 0.995 < R2
j < 1. This implies extremely high multicollinearity. In

the context of the original Heckman-Lee formulation, Little (1985) and Leung and Yu (1996) have

pointed out that the correction term (so-called inverse Mills-ratio) is linear over much of the range of

variation of the underlying index function. Evidently the same observation applies to our formulation

which exploits nine correction terms. However, one might think that the problem is exacerbated

by the computational fragility of the double selection model. We pursued this line of thinking

by engaging in a secondary empirical investigation. First, to side step the computational fragility

issue, we re-estimated our double selection model by imposing the second variance normalization:

σ22 = 1. This version yielded ρ̂12 = −0.746, a correlation estimate which is comfortably away from
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the boundary. However multicollinearity remained extremely high, with 0.964 < R2
j < 0.9997 for

j = 1, 2, ..9.

Next, to assure that multicollinearity among the correction terms was not speci�c to a particular

data set, we also generated λ̂'s for the migration-remigration problem of Tunali (1986), which is

another example of double selection at work. The empirical context of the problem is as follows.

There are three earnings pro�les: y∗s under the stay option, y∗o under the one-time move option,

y∗f under the frequent move option. Let δ∗1 = y∗o− y∗s denote anticipated earnings gain from the

one-time move to the best potential destination, and τ∗1 be the cost of that move. Let δ∗2 = y∗f− y∗o

denote anticipated incremental earnings gain from the frequent move involving the best potential

combination of intermediate and �nal destinations, and τ∗2 be the cost of that move. Tunali (1986)

assumes that individuals are rational, in that sense anticipations are unbiased. Then, the latent

dependent variables of Equations (1) - (2) in the generic formulation in Section 2.1 are obtained as

y∗1 = δ∗1 − τ∗1 and y∗2 = δ∗2 − τ∗2 . Upon introducing the variable r = sup{0, y∗1, y∗1 + y∗2}, the decision

rule becomes

Stay if r = 0, (23)

Move once if r = y∗1, (24)

Move more than once if r = y∗1 + y∗2. (25)

However, modi�ed decision rule in Tunali (1986) treats r = y∗1 + y∗2 > 0 > y∗1 (move more than

once will be optimal in this case) as a stay decision on the grounds that the �rst move will not be

feasible when 0 > y∗1. Under this feasibility constraint, the modi�ed decision rule may be expressed

using the two dichotomous variables given in Equation (5):

Stay if D1 = 0, (26)

Move once if D1 = 1 and D2 = 0, (27)

Move more than once if D1 = 1 and D2 = 1. (28)

Thus, D2 is observed if and only if D1 = 1. The sample selection regime for this problem is a

3-way classi�cation with Λ = {D1, D2 if and only if D1 = 1}, whereby the cells of the �rst row of
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Figure 1 cannot be distinguished. A detailed empirical investigation of this incomplete classi�cation

problem may be found in Tunali (1986). Returning to our examination of the multicollinearity

issue, the �rst step yields ρ̂12 = 0.389 but high multicollinearity is still present in the second step:

0.910 < R2
j < 0.9999 for j = 1, 2, ..9. It appears that extremely high multicollinearity is part and

parcel of our approach.5

4 Multinomial Logit Based Selection Correction Models

Multinomial Logit based selection correction models are used as alternatives to Multivariate Normal

based models in the literature. In what follows we o�er a brief exposition to adapt the relevant

models to our empirical context and underscore the di�erences among them. Estimation proceeds

in two steps. The Multinomial Logit based selection correction models di�er in the second step.

Conveniently, the empirical results for all the models reviewed here can be obtained using the

STATA module selmlog developed by Bourguignon et al. (2007).

4.1 Selection Step

The starting point is a selection equation for each possible state. In the context of Tunali and

Baslevent (2006), upon suppression of the subscripts for the individuals these may be expressed as

y∗j = θ
′
jz + ηj for j = 0, 1, 2, 3, (30)

where y∗j 's denote the unobserved utility obtained from the choice of labor force participation status

j, z is the vector of explanatory variables, θj 's are the corresponding vectors of unknown coe�cients

and ηj 's are the random disturbances. Let r = max (y∗0, y
∗
1, y
∗
2, y
∗
3). The four way classi�cation is

5To understand the implications for standard errors, we may partition the full covariate matrix X̃3 as (X31 | X32),
where X31 includes all explanatory variables of the model without selectivity correction terms (X31 = X3 in terms
of the notation given in the generic statement of the double selection model), and X32 includes all the selectivity
correction terms. We can write:

(X̃
′
3X̃3)

−1 =

(
X

′
31X31 X

′
31X32

X
′
32X31 X

′
32X32

)−1

. (29)

We use the lower right block of the matrix (X̃
′
3X̃3)

−1 in calculating the standard errors of the coe�cients on the

λ̂j 's. This block may be computed as [(X
′
32X32)−X

′
32X31(X

′
31X31)

−1X
′
31X32]

−1 via submatrix inverse theorem (see

Goldberger (1991)). Extremely large R2
j 's imply that the matrix (X

′
32X32) is nearly singular. However, this matrix

is not inverted. Instead, the di�erence between (X
′
32X32) and X

′
32X31(X

′
31X31)

−1X
′
31X32 is inverted. Therefore, it

is possible to compute the standard errors despite extremely high multicollinearity between the λ̂j 's.
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obtained via the following categorical variable:

LFP ′ =



0 = home-work, if r = y∗0,

1 = self-employment, if r = y∗1,

2 = wage labor, if r = y∗2,

3 = unemployed, if r = y∗3.


. (31)

Hence, the sample selection regime is given by Λ = {LFP ′} and Equation (30) corresponds to the

selection equations.

Under the assumption that the random disturbances (ηj 's) are independently and identically

Gumbel distributed, independently of the vector of explanatory variables, McFadden (1974) proves

that the selection probabilities are given by the Multinomial Logit model (MLM):

πj = Pr(LFP ′ = j | z) =
exp(θ

′
jz)

3∑
ζ=0

exp(θ
′
ζz)

, j = 0, 1, 2, 3. (32)

Since
3∑

k=0

πk = 1, we choose non-participants as the reference group and set θ0 = 0. We may obtain

consistent estimates of θj 's by maximizing the likelihood function in Equation (33):

L =
∏

LFP=0

π0
∏

LFP=1

π1
∏

LFP=2

π2
∏

LFP=3

π3. (33)

Note that our selectivity correction approach allows correlation between the random distur-

bances of the two selection equations, but computational di�culties limit its generalization (unless

simulation based estimation is used at the �rst stage). On the other hand, Multinomial Logit based

selection correction models do not allow correlation between the random disturbances of the se-

lection equations. Consequently they can handle a large number of selection equations. However,

the independence assumption ushers in the so-called Independence of Irrelevant Alternatives (IIA)

property, whereby the odds of choice between any two options is strictly a function of the system-

atic utility components of these two options. In our empirical context this implies that choice of

self-employment over the home-work option is not a�ected by how attractive the wage work option

is. In similar vein, the desirability of the self-employment option does not in�uence the choice of
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wage work over home-work. Thus strong (if not untenable) implicit behavioral assumptions may be

present when the MLM set-up is adopted.

Note that in our model the unemployed prefer either self-employment or wage work over home-

work, but we do not know their preferences between the two employment options. This restricts the

choice probabilities in a particular way; namely, π3 = 1 − π0. Because of the IIA assumption, this

restriction cannot be incorporated into the MLM. Instead, unemployment needs to be treated as a

distinct state. Therefore, another potential limitation of these models is the failure to capture the

choice structure appropriately. Despite this failure, we still discuss some well-known Multinomial

Logit based selection correction models.

4.2 Regression Step

In our evaluation we considered the methods developed by Lee (1983), Dubin and McFadden (1984),

Dahl (2002) and two variants of the Dubin-McFadden model proposed by Bourguignon et al. (2007).

Regression equation given in Equation (22) remains intact. The aim as before is to estimate the

parameter vector of the wage equation for the subsample of individuals with LFP
′

= 2. Returning

to the generic statement of the selectivity problem in Equation (4), once again we are confronted

with E(u3 | X,Λ) 6= 0. Multinomial Logit based correction methods invoke di�erent assumptions

and end up with di�erent parametric forms for E(u3 | X,Λ). As in the conventional Heckman-

Lee formulation, the correction terms arise because of correlation between the random components

of the selection equations and the random disturbance term of the regression equation. In what

follows we denote the correlations between ηj and u3 by ρj for j = 0, 1, 2, 3 and their di�erences by

Υl = ρl − ρ2 for l = 0, 1, 3. Utilizing Equation (30), we may de�ne the maximum utility di�erence

relative to the wage labor state by

ε2 = max(y∗l − y∗2) for l ∈ {0, 1, 3}. (34)

Then,

LFP ′ = 2⇐⇒ ε2 < 0. (35)
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4.2.1 Lee's (1983) Model (LEE)

Lee (1983) generalizes the two-step selection correction methodology provided by Heckman (1976,

1979) and Lee (1976, 1979) by extending it to polychotomous choice. He has two insights: (i) by

treating the utility associated with the chosen state as the maximum of an order statistic, he is able

to express the choice as a condition on a univariate random variable [see equations (34) and (35)];

(ii) by transforming the distribution of that random variable to normality, he is able to relocate the

problem in the conventional Heckman-Lee framework.

Assume that the cumulative distribution function for ε2 is given by Fε2(ε2 | θ
′
z) where θ is a

matrix of unknown coe�cient vectors in each selection equation, i.e. θ = (θ0 | θ1 | θ2 | θ3). Lee

(1983) relies on the transformation

Jε2(ε2 | θ
′
z) = Φ−1(F (ε2 | θ

′
z)), (36)

where Φ is the standard normal distribution function. He makes the following assumption:

The joint distribution of (u3, Jε2(ε2 | θ
′
z)) does not depend on the index θ

′
z. (37)

This assumption is contested in the literature since it has strong implications. First, the trans-

formation implies that the marginal distribution of Jε2(ε2 | θ
′
z) is independent of θ

′
z, but it does

not tell us anything about the joint distribution of u3 and Jε2(ε2 | θ
′
z). Second, Schmertmann

(1994) shows that under index independence assumption of Lee (1983), Υl = ρl − ρ2 for l = 0, 1, 3

must have the same sign. Moreover, if we assume ηl − η2's are identically distributed, Υl's will be

identical for l = 0, 1, 3 (Bourguignon et al. (2007)).

Lee (1983) also assumes that

E(u3 | ε2, θ
′
z) = c2Jε2(ε2 | θ

′
z), (38)

where c2 is the correlation between u3 and Jε2(ε2 | θ
′
z). Clearly Equation (38) would follow if u3 and

ε2 are bivariate normally distributed, but this is a strong assumption. Another way to justify the

functional form is to translate the arbitrary distribution of u3 to standard normal via Ju3(u3) say,
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before assuming that the joint distribution of (Ju3(u3), Jε2(ε2 | θ
′
z)) is standard bivariate normal,

independently of θ
′
z. When u3 is not normally distributed, this equation may be viewed as a best

linear approximation to the conditional expectation function.

This approach yields

E(u3 | LFP
′

= 2, θ
′
z) = −c2λLEE2 , (39)

where λLEE2 =
φ(Jε2 (0 | θ

′
z))

Fε2 (0 | θ
′z)

. The regression equation becomes

log(wage) = β
′
3X3 + γLEEλLEE2 + v3 (40)

where γLEE = −σ3c2 with σ3 = V (u3) and v3 is a heteroscedastic random disturbance term with

E(v3 | Λ) = 0. Note that λLEE2 is the familiar term in conventional single selection correction.

Maximum likelihood estimates of θ which come from the �rst step are used to obtain consistent

estimates of λLEE2 , and the second step estimates of β3 and γ
LEE are obtained via linear regression.

4.2.2 Dubin and McFadden's (1984) Model (DMF) and Its Two Variants

All three approaches share the assumption that the conditional expectation function of the regression

equation random disturbance is a linear function of the selection equation random disturbances:6

E(u3 | η1, η2, η3, η4) =

√
6

π

3∑
j=0

ρj(ηj − E(nj)). (41)

Since ηj 's are assumed to have independent Gumbel distributions, it follows that

E(η2 − E(n2) | LFP
′

= 2, θ
′
z) = − log(π2), (42)

E(ηl − E(nl) | LFP
′

= 2, θ
′
z) =

πl log(πl)

1− πl
for l = 0, 1, 3. (43)

where log denotes the natural logarithm. Note that E(ηj) = 0.57721.., the Euler-Mascheroni con-

6Linear conditional expectation function assumption is a convenient starting point going back to Olsen
(1980). See Vella (1998) for a broad discussion.
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stant, and V (ηj) = π2/6. To assure that E(u3 | X3) = 0, Dubin and McFadden (1984) also assume

3∑
j=0

ρj = 0. (44)

Under the assumptions given by Equations (41) - (44), the regression equation becomes

log(wage) = β
′
3X3 +

∑
l=0,1,3

γDMF
l λDMF

l + v3, (45)

where λDMF
l = πl log(πl)

1−πl + log(π2), γ
DMF
l = σ3

√
6

π ρl for l = 0, 1, 3 and v3 is a heteroscedastic

random disturbance term with E(v3 | Λ) = 0. Estimates of λDMF
l are formed using the selection

step maximum likelihood estimates. The estimates of the parameters in Equation (45) are obtained

in the second step via linear regression.7

Observe that if the linear functional forms in Equations (39) and (41) are not contested, DMF

can be regarded as superior to LEE because the only restriction on the correlation structure is via

Equation (44). However, Bourguignon et al. (2007) show via Monte Carlo experiments that the

restriction in Equation (44) causes biased results when incorrectly imposed; in contrast, e�ciency

loss is small by not imposing it when the restriction holds. Hence, they drop the restriction in

Equation (44) and refer to it as the �rst variant of Dubin and McFadden (1984) model (DMF1).

For the DMF1 version, the regression equation is given by

log(wage) = β
′
3X3 +

∑
l=0,1,2,3

γDMF1
l λDMF1

l + v3, (46)

where λDMF1
2 = − log(π2), λ

DMF1
l = πl log(πl)

1−πl for l = 0, 1, 3, γDMF1
l = σ3

√
6

π ρl for l = 0, 1, 2, 3,

and v3 is a zero mean, heteroscedastic random disturbance term. Observe that if we set ρ2 =

−(ρ0 + ρ1 + ρ3), we get Equation (45). Hence DMF1 is more general compared to DMF. After

forming the four selectivity correction terms using the �rst step maximum likelihood estimates, we

run a least squares on Equation (46) to obtain the second step estimates of the DMF1 model.

Since the linearity assumption in Equation (41) restricts the distribution of u3, Bourguignon

7Even though the second step does not provide us with an estimate for ρ2 , it can be calculated using Equation
(44).
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et al. (2007) propose a second variant of Dubin and McFadden (1984) model (DMF2). Assuming

that the cumulative distribution function for ηj is given by G(ηj) they rely on the transformation

idea of Lee (1983). Let

η∗j = J(ηj) = Φ−1(G(ηj)) (47)

and assume that conditional expectation function of interest is a linear function η∗j 's (rather than

the ηj 's as in DMF and DMF1):

E(u3 | η1, η2, η3, η4) =

4∑
j=1

ρ∗jη
∗
j , (48)

where ρ∗j is the correlation between u3 and η
∗
j . Note that the assumption in Equation (48) holds if

u3 and η
∗
j 's are multivariate normally distributed. Assuming that g(.) denotes the density function

of ηj , let

M(πj) =

∫
J(v − log(πj))g(v)dv for j = 0, 1, 2, 3. (49)

Then, Bourguignon et al. (2007) derive the following:

E(η∗2 | LFP
′

= 2, θ
′
z) = M(π2). (50)

E(η∗l | LFP
′

= 2, θ
′
z) = M(πl)

πl
πl − 1

for l = 0, 1, 3. (51)

As a result, the regression equation can be written as

log(wage) = β
′
3X3 +

∑
l=0,1,2,3

γDMF2
l λDMF2

l + v3, (52)

where λDMF2
2 = M(π2), λ

DMF2
l = M(πl)

πl
πl−1 for l = 0, 1, 3, γDMF2

l = σ3ρ
∗
l for l = 0, 1, 2, 3, and

v3 is a heteroscedastic random disturbance term with E(v3 | Λ) = 0. Even though M 's do not have

closed form solutions, they can be computed using Gauss-Laguerre quadrature. Bourguignon et al.

(2007) computes these terms using Davis and Polonsky (1964). Second step estimates of DMF2 are

obtained by running a linear regression on Equation (52) after forming consistent estimates of the

selectivity correction terms using the maximum likelihood estimates from the �rst step.
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4.3 Dahl's (2002) Model

Using a semi-parametric model, Dahl (2002) solves an ambitious problem dealing with 51 choice

outcomes, each of which has its own set of control functions. In the spirit of Ahn and Powell (1993)

and Das et al. (2003), Dahl (2002) exploits series approximations to the true control functions. An

index su�ciency assumption is invoked to express control functions as polynomials in the choice

probabilities. However, the curse of dimensionality precludes use of all choice probabilities. To

render the problem tractable, Dahl (2002) proposes restricting the set of choice probabilities to a

subset Q
′
of the full choice set Q [in our case Q = {π0, π1, π2}, with π3 = 1− (π0+ π1+ π2) ]. His

two assumptions impose the following structure on the conditional joint density function of u3 and

ε2:

ϕ(u3, ε2 | θ
′
z) = ϕ(u3, ε2 | Q) = ϕ(u3, ε2 | Q

′
), (53)

The control function in turn becomes

E(u3 | LFP
′

= 2, θ
′
z) = E(u3 | LFP

′
= 2, Q

′
) = ψ(Q

′
). (54)

Here ψ(.) is a unique function, which Dahl (2002) obtains by assuming that the choice probabilities

are invertible. Then, the regression function can be expressed as

log(wage) = β
′
3X3 + ψ(Q

′
) + v3 , (55)

where v3 is a heteroscedastic random disturbance term with E(v3 | Λ) = 0. This approach has

two shortcomings. First, as stated by Dahl (2002), we generally can not test the index su�ciency

assumption. Second, reducing dimensionality is equivalent to restricting the correlations between

ηj and u3 for j = 0, 1, 2, 3 (which we term ρj) to be a function of the elements of Q
′
(Bourguignon

et al. (2007)).

A special case of this model proposed by Dahl (2002) is to assume that the set Q
′
is a singleton

containing only the chosen alternative, in our case LFP
′

= 2. Notice that this assumption is another

way of reducing a multiple index problem to a single index problem, which Lee (1983) justi�ed via
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his �rst order statistic approach. In the special case, the regression equation becomes

log(wage) = β
′
3X + ψ(π2) + v3 (56)

Dahl (2002) estimates the selection probabilities nonparametrically, as cell averages. Our data

set does not support a nonparametric approach. By relying on the MLM at the �rst step, we

conveniently situate Dahl's approach among the others we have discussed. However, unlike the

other Multinomial Logit based selection correction models, Dahl (2002) does not assume a linear

conditional expectation function. The form of the regression equation is derived from the behavioral

model under the index su�ciency assumption. Following Bourguignon et al. (2007), we consider two

variants of Dahl (2002): in the �rst variant, we express ψ to be a function of the probability of the

relevant choice (π2 in our case) up to fourth order, and in the second, we let ψ to be a function of

all choice probabilities, each as a fourth-order polynomial, and with all interactions between them.

This latter approach is identi�ed as DAHL2 in our analysis. In both approaches, π2 is estimated in

the �rst step.

4.4 Application Revisited

We revisit the application given in Section 3 and estimate it using the Multinomial Logit based

selection correction models. Conveniently, the estimation steps can be implemented using the

STATA module selmlog developed by Bourguignon et al. (2007).8 The results obtained from the

selection step are presented in Table 4. Observe that while we set P3 = P1 + P2 in our Edgeworth

based selection correction following Tunali and Baslevent (2006), Multinolmial Logit based selection

correction models cannot accomodate this restriction. As seen in Table 4, coe�cients in columns 1

and 2 do not sum to those in column 3. Unlike our model, logit based models use an independent

equation for the unemployed. Since selectivity is our main concern, we proceed with the second

step.

Once the method is chosen, the selectivity correction terms are formed in line with the expres-

sions given above and the regression estimates for wage workers are obtained. In LEE, DMF, DMF1

and DMF2 weighed least squares was employed to take heteroscedasticity into account. The

8The STATA ado �le is available at http://www.parisschoolofeconomics.com/gurgand-marc/selmlog/
selmlog13.html.
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Table 4: Selection Step for Multinomial Logit Based Selection Correction Models

Variable
Self-employed Wage Worker Unemployed
Coef. Std.

Error
Coef. Std.

Error
Coef. Std.

Error

Age 0.085 0.090 0.575∗∗∗ 0.067 0.128 0.087

Age Squared/100 −0.113 0.126 −0.839∗∗∗ 0.097 −0.264∗∗ 0.129

Literate without a Diploma 0.402 0.282 0.371 0.262 0.310 0.295

Elementary School 0.194 0.221 0.500∗∗∗ 0.185 0.287 0.207

Middle School 1.083∗∗∗ 0.311 1.493∗∗∗ 0.233 0.863∗∗∗ 0.282

High School 0.572 0.348 3.226∗∗∗ 0.189 1.642∗∗∗ 0.244

University 1.630∗∗∗ 0.559 5.089∗∗∗ 0.235 1.735∗∗∗ 0.476

Husband Self-employed 0.082 0.160 −1.318∗∗∗ 0.125 −0.863∗∗∗ 0.166

Children Aged 0− 2 −0.362 0.232 −0.390∗∗∗ 0.134 −0.505∗∗∗ 0.174

Children Aged 3− 5 −0.163 0.193 −0.429∗∗∗ 0.118 −0.176 0.147

Female Children aged 6− 14 0.381∗∗ 0.178 −0.260∗∗ 0.114 −0.086 0.151

Male Children aged 6− 14 0.160 0.180 −0.405∗∗∗ 0.113 0.020 0.152

Extended Household 0.634∗ 0.343 0.094 0.256 −0.156 0.400

Ext. HH Ö Children Aged 0− 2 0.220 0.562 0.260 0.338 0.099 0.566

Ext. HH Ö Children Aged 3− 5 −0.067 0.523 0.446 0.308 −0.450 0.543

Ext. HH Ö Female Ch. Aged 6− 14 −0.702 0.487 −0.007 0.312 0.183 0.505

Ext. HH Ö Male Ch. Aged 6− 14 −0.301 0.476 0.293 0.306 −0.090 0.511

Share of Textiles −0.163 0.539 1.212∗∗∗ 0.433 0.823∗ 0.498

Share of Agriculture −1.115 1.248 1.939∗∗ 0.841 −1.397 1.039

Share of Finance −6.208 4.435 −2.910 3.615 −4.184 4.793

Migration Rate −10.18∗∗∗ 3.356 7.469∗∗ 3.070 −3.402 3.406

Aegean −0.729∗∗ 0.310 0.551∗∗ 0.227 0.507∗ 0.260

South −0.105 0.291 −0.283 0.240 −0.033 0.315

Central −1.739∗∗∗ 0.361 0.670∗∗ 0.292 0.090 0.343

North West −1.559∗∗∗ 0.552 1.012∗∗ 0.398 0.350 0.412

East −1.386∗∗ 0.543 0.495 0.415 0.118 0.481

South East −0.451 0.468 −0.223 0.361 −1.750∗∗∗ 0.609

North East −2.790∗∗∗ 1.062 1.037∗∗ 0.463 0.347 0.485

Population 200, 000 or more −16.509∗∗∗ 2.978 2.749 2.309 −4.006 2.941

Population 1 million or more −4.545∗∗∗ 1.240 2.400∗ 1.346 3.757∗∗∗ 1.465

Share of Welfare Party 0.766∗∗∗ 0.263 0.303∗ 0.174 0.088 0.230

Share of Left of Center −0.372 0.259 0.126 0.185 −0.523∗∗ 0.249

Constant −1.993 1.693 −14.708∗∗∗ 1.343 −5.258∗∗∗ 1.605

Number of Observations 8962

Log-Likelihood Without Covariates −4603.94

Log-Likelihood With Covariates −3528.64

Notes: Robust standard errors are reported. ∗ is signi�cant at 10%; ∗∗ is signi�cant at 5%; ∗∗∗ is
signi�cant at 1%. The reference group is non-participation.

relevant weights can be found in the appendix of Bourguignon et al. (2007). Standard errors are

estimated using the bootstrap method by drawing with replacement 100 and 400 samples from the
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subsample of interest, which in our case has 735 observations. Since additional bootstrapping does

not lead to big di�erences in the standard errors of the variables, we only report the estimates of

the version with 100 replications.

Table 5: LEE Estimates of the Wage Equation
Variable Coe�cient Std. Error

Experience 0.033∗∗ 0.014

Experience Squared/100 −0.068∗ 0.041

Literate without a Diploma −0.110 0.190

Elementary School −0.003 0.124

Middle School 0.250∗ 0.143

High School 0.486∗∗∗ 0.184

University 1.067∗∗∗ 0.256

Share of Textiles −0.391∗∗∗ 0.144

Share of Agriculture 0.156 0.254

Share of Finance 4.211∗∗∗ 1.194

Aegean −0.132∗∗ 0.067

South 0.153 0.095

Central 0.029 0.077

North West −0.171 0.110

East 0.137 0.130

South East 0.184∗ 0.112

North East −0.129 0.125

λ̂2
LEE −0.009 0.114

Constant −0.967∗∗∗ 0.321

σ33 0.279∗∗∗ 0.062

c2 −0.016 0.178

Number of Observations 735

Notes: Standard errors are estimated

using 100 bootstrap replications. ∗ is signi�cant at 10%; ∗∗ is signi�cant at 5%; ∗∗∗ is signi�cant at
1%.

Table 5 gives the results based on LEE. The selmlog module provides consistent estimates of

σ3 and c2 without restricting c2 to the [−1, 1] interval. The �nding from LEE supports random

selection since the selectivity correction term has a p − value = 0.939. Table 6 reports the second

step estimates from DMF, DMF1 and DMF2. The selmlog module provides consistent estimates

of σ33, ρj and ρ
∗
j for j = 0, 1, 2, 3 without restricting the correlation estimates to their theoretical

ranges. The selection correction terms are jointly insigni�cant in all the models (p− value = 0.667

for DMF, 0.8021 for DMF1, and 0.9564 for DMF2). The �ndings from all four models contradict

the results based on trivariate normality and our robust speci�cation. In fact results obtained from

these models are very similar to those for random selection, reported in Table 3.
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Table 6: DMF, DMF1 and DMF2 Estimates of the Wage Equation

Variable
DMF2 DMF1 DMF

Coef. Std.
Error

Coef. Std.
Error

Coef. Std.
Error

Experience 0.031∗∗ 0.012 0.028∗∗ 0.014 0.029∗∗ 0.013

Experience Squared/100 −0.064∗ 0.034 −0.057 0.036 −0.060∗ 0.036

Literate without a Diploma −0.127 0.195 −0.138 0.190 −0.128 0.182

Elementary School −0.030 0.137 −0.044 0.137 −0.032 0.124

Middle School 0.191 0.176 0.167 0.187 0.208 0.143

High School 0.453∗∗ 0.197 0.409∗∗ 0.186 0.436∗∗∗ 0.162

University 1.044∗∗∗ 0.299 1.041∗∗∗ 0.285 1.052∗∗∗ 0.225

Share of Textiles −0.419∗∗ 0.166 −0.377∗ 0.197 −0.329∗∗ 0.160

Share of Agriculture 0.176 0.278 0.146 0.271 0.105 0.234

Share of Finance 4.593∗∗∗ 1.728 4.400∗∗ 2.166 3.920∗∗∗ 1.247

Aegean −0.115 0.085 −0.114 0.121 −0.113 0.095

South 0.155∗ 0.105 0.155 0.134 0.159 0.102

Central 0.045 0.088 0.044 0.107 0.035 0.081

North West −0.150 0.125 −0.138 0.135 −0.131 0.111

East 0.156 0.143 0.149 0.191 0.145 0.129

South East 0.199 0.140 0.178 0.192 0.140 0.111

North East −0.101 0.173 −0.077 0.176 −0.090 0.125

λ̂0
DMFm −0.142 0.256 −0.361 0.410 −0.352 0.346

λ̂1
DMFm −0.667 1.415 −0.290 2.475 0.136 0.544

λ̂2
DMFm −0.025 0.974 −0.064 0.060

λ̂3
DMFm

0.090 0.546 0.084 0.413 0.273 0.392

Constant −1.002∗∗∗ 0.325 −1.052∗∗ 0.439 −1.001∗∗∗ 0.352

σ33 0.309∗∗∗ 0.132 0.417 0.420 0.432 0.347

ρ0 −0.718 0.529 −0.686 0.476

ρ1 −0.576 2.588 0.266 0.784

ρ2 −0.127 0.096

ρ3 0.168 0.610 0.532 0.574

ρ∗0 −0.255 0.432

ρ∗1 −1.200 1.932

ρ∗2 −0.046 0.160

ρ∗3 0.163 0.831

Number of Observations 735 735 735

Notes: Standard errors are estimated using 100 bootstrap replications. ∗ is signi�cant at 10%; ∗∗ is
signi�cant at 5%; ∗∗∗ is signi�cant at 1%.

Table 7 provides the second step estimates obtained from DAHL1 and DAHL2. Unfortunately

we cannot test for non-random selection since the selmlog module neither provides robust standard

errors for correction terms nor computes R2's. Upon comparing the slope estimates of the education

dummies in Table 7 with those obtained from our robust correction in Table 3, we observe that both
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Table 7: DAHL 1 and DAHL 2 Estimates of the Wage Equation

Variable
DAHL2 DAHL1

Coe�cient Std. Error Coe�cient Std. Error

Experience 0.027∗ 0.016 0.033∗∗ 0.014

Experience Squared/100 −0.050 0.039 −0.067∗ 0.039

Literate without a Diploma −0.204 0.187 −0.140 0.182

Elementary School −0.090 0.120 −0.041 0.120

Middle School 0.158 0.162 0.182 0.146

High School 0.592∗∗∗ 0.201 0.533∗∗∗ 0.170

University 1.066∗∗∗ 0.291 1.147∗∗∗ 0.240

Share of Textiles −0.274 0.195 −0.370∗∗∗ 0.121

Share of Agriculture 0.114 0.276 0.140 0.233

Share of Finance 4.474∗∗∗ 1.636 4.138∗∗∗ 1.168

Aegean −0.122 0.109 −0.142∗ 0.077

South 0.146 0.112 0.130 0.086

Central 0.098 0.097 0.029 0.073

North West −0.103 0.125 −0.181∗∗ 0.091

East 0.206 0.152 0.113 0.113

South East 0.003 0.165 0.172 0.109

North East −0.074 0.161 −0.122 0.113

Constant −267.265 418.920 −1.030∗∗∗ 0.223

Number of Observations 735 735

Notes:

Standard errors are estimated using 100 bootstrap replications. ∗ is signi�cant at 10%; ∗∗ is
signi�cant at 5%; ∗∗∗ is signi�cant at 1%.

DAHL1 and DAHL2 yields results close to ours. This may not be surprising given the fact that

both approaches involve series approximations. As we argued in Section 3.2, returns to education

estimates are likely to be biased unless selectivity is properly accounted. It appears that the control

functions in Dahl (2002) do a better job in doing the adjustment for selectivity compared to the

other Moultinomial Logit based selection correction alternatives. Note that the point estimates of

the other statistically signi�cant variables in DAHL1 di�er from ours by up to 20 percent. The

discrepancy rises to 30 percent in the case of DAHL2.

5 Conclusion

This paper discusses correction of selectivity bias in models of double selection. The approach

proposed here relaxes the conventional trivariate normality assumption that builds on the Heckman-

Lee tradition. Instead, we let the distribution of the disturbance term in the regression equation free

and assume that the random disturbance terms of the two selection equations are bivariate normally
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distributed exploiting and Edgeworth expansion. To render our approach tractable, we truncate

the terms that provide the series approximation consistent with the literature. Since we allow

for skewness and kurtosis, our methodology o�ers a major improvement over trivariate normality.

Besides, we can test whether the trivariate normality speci�cation is tenable. To assess the relative

merits of the new method, we compare our methodology with Multinomial Logit based selection

correction models.

Arguably the main drawback of our model is the fact that extension beyond two selection

equations cannot be handled. Multinomial Logit based correction models do not have this handicap.

However these models de�ne an independent selection equation for each possible category and

impose the questionable IIA structure. Our model has the advantage of allowing correlation between

the random disturbances of the two selection equations. In addition, problems in which the states

are not pairwise disjoint are tractable via our speci�cation.

To illustrate the di�erences among various selection correction models, an empirical example

involving the wage determinants of regular and casual female workers in Turkey is presented. Only a

fraction of women living in urban areas of Turkey participate and participation probability increases

dramatically in response to an increase in education level. Thus, there is reason to believe that wage

workers are not a random subsample. Indeed, both the conventional trivariate normality based

correction method and our Edgeworth expansion based approach support this conjecture. Notably,

the example provides evidence in favor of our new approach, rather than the trivariate normal

version. We conclude that it is important to allow for kurtosis and skewness.

As examples of Multinomial Logit based selection correction models, we analyzed the methods

provided by Lee (1983), Dubin and McFadden (1984) plus its two variants, and Dahl (2002). Except

for Dahl (2002), the alternatives we considered failed to detect any selectivity in an empirical context

conducive to selectivity bias. The substantive results from DAHL1 and DAHL2 were closer to those

obtained under our Edgewoth based selectivity correction.

Since our selection model is an improvement the conventional trivariate normality assumption

builded on the Heckman-Lee tradition, and allows for correlation between selection equations and

is capable of accomodating pairwise joint states compared to Multinomial Logit based selection

correction models, we are unable to identify any reasons for opting for other methods when a

problem can be formulated as a double selection model.
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A Appendix

A.1 Derivation of Equations (11) and (12)

Let f(u1, u2, ũ3) be the joint density of u1, u2 and ũ3. The triplet (u1i, u2i, ũ3i) is assumed to be

independently and identically distributed across individuals with zero mean vector and covariance

matrix

Σ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 ,
and is independent of Xki for k = 1, 2, 3. For brevity, we suppress the conditioning on covariate

matrix X and the individual subscript i throughout the section. Our aim is to obtain an expression

for E(ũ3 | u1, u2).

We denote the standard trivariate normal density STVN (ρ12, ρ13, ρ23) by g(u1, u2, u3) and the

standard bivariate normal density SBVN (ρ12) by g(u1, u2). Let k(ũ3 | u1, u2) be the conditional

density of ũ3 given u1 and u2. We assume that k(ũ3 | u1, u2)g(u1, u2) = f(u1, u2, ũ3), i.e. we specify

the joint distribution of (u1, u2) as standard bivariate normal, but allow the conditional distribution

of ũ3 given u1 and u2 to be non-normal. Let

A =
√

1− (ρ212 + ρ213 + ρ223 − 2ρ12ρ13ρ23), (A.1.1)

a =
1√

1− ρ212
, (A.1.2)

b1 = ρ13 − ρ12ρ23, (A.1.3)

b2 = ρ23 − ρ12ρ13, (A.1.4)

c =
a

A
(b1u1 + b2u2) , (A.1.5)

u∗1(u1, u2) = u∗1 = a(u1 − ρ12u2), (A.1.6)

u∗2(u1, u2) = u∗2 = a(u2 − ρ12u1), (A.1.7)

u∗3 =
u3
Aa
− c. (A.1.8)
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We can write:

E

(
ũ3
Aa
| u1, u2

)
g(u1, u2) =

∫ ∞
−∞

ũ3
Aa

k(ũ3 | u1, u2)g(u1, u2)dũ3. (A.1.9)

Equivalently,

E(ũ3 | u1, u2)
g(u1, u2)

Aa
=

∫ ∞
−∞

ũ3
Aa

f(u1, u2, ũ3)dũ3. (A.1.10)

For the Type AAA surface de�ned in Section 2.3, we may expand f(u1, u2, ũ3) in terms of a series

of derivatives of g(u1, u2, u3) via Equation (7). We truncate the expansion by keeping terms with

r + s + p ≤ 4. This allows us to set Arsp = Krsp where K's denote cumulants (Lahiri and Song

(1999)). Thus, the truncated version of Equation (A.1.10) is:

E(ũ3 | u1, u2)g(u1,u2)Aa =
∫∞
−∞

u3
Aag(u1, u2, u3)du3

+
4∑

r+s+p=3

(−1)r+s+p
r!s!p! Krsp

∫∞
−∞

u3
AaD

r
u1D

s
u2D

p
u3g(u1, u2, u3)du3.

(A.1.11)

Let

I1 =

∫ ∞
−∞

u3
Aa

g(u1, u2, u3) du3, (A.1.12)

and

Irsp =

∫ ∞
−∞

u3
Aa

Dr
u1D

s
u2D

p
u3g(u1, u2, u3)du3. (A.1.13)

Then, Equation (A.1.11) may be expressed as

E(ũ3 | u1, u2)
g(u1, u2)

Aa
= I1 +

4∑
r+s+p=3

(−1)r+s+p

r!s!p!
KrspIrsp. (A.1.14)

Claim: g(u1, u2, u3) =
φ(u1)φ(u∗2)φ(u∗3)

A , where φ is the univariate standard normal density.

Proof: Let g(u2 | u1) be the conditional density function of u2 given u1 and g(u3 | u1, u2) be

the conditional density of u3 given u1 and u2. Then, g(u1, u2, u3) can be written as a product of

marginal and conditional distributions:

g(u1, u2, u3) = g(u1)g(u2 | u1)g(u3 | u1, u2). (A.1.15)
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Clearly, g(u1) = φ(u1). We know from Goldberger (1991) that

g(u2 | u1) = aφ (u∗2) . (A.1.16)

Now, let us �nd g(u3 | u1, u2). Using the formula in Goldberger (1991), we obtain

E(u3 | u1, u2) = a2(b1u1 + b2u2), (A.1.17)

V ar(u3 | u1, u2) = A2a2. (A.1.18)

Then,

g(u3 | u1, u2) =
φ (u∗3)

Aa
. (A.1.19)

Substituting Equation (A.1.16) and Equation (A.1.19) into Equation (A.1.15), we obtain

g(u1, u2, u3) =
φ(u1)φ (u∗2)φ (u∗3)

A
Q.E.D. (A.1.20)

Inserting Equation (A.1.20) into Equation (A.1.13) and making the transformation z3 = u∗3, so

Aadz3 = du3, we get

Irsp =

∫ ∞
−∞

(z3 + c)Dr
u1D

s
u2D

p
u3φ(u1)φ (u∗2)φ(z3)adz3. (A.1.21)

Let φ(p) denote the pth derivative of the univariate standard normal density. Observe that

Dp
u3φ(z3) = φ(p)(z3)

(
1

Aa

)p
, (A.1.22)

and

Dp
z3φ(z3) = φ(p)(z3). (A.1.23)

Hence, (
1

Aa

)p
Dp
z3φ(z3) = Dp

u3φ(z3). (A.1.24)
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Substituting Equation (A.1.24) into Equation (A.1.21), we obtain

Irsp =
1

Apap−1

∫ ∞
−∞

(z3 + c)Dr
u1D

s
u2D

p
z3φ(u1)φ (u∗2)φ(z3)dz3. (A.1.25)

Making another transformation z3 = u3 (abusing the notation), so Dp
z3φ(z3) = Dp

u3φ(u3) and

dz3 = du3, we have

Irsp =
1

Apap−1

∫ ∞
−∞

(u3 + c)Dr
u1D

s
u2D

p
u3φ(u1)φ (u∗2)φ(u3)du3. (A.1.26)

The de�nition of rth order univariate Hermite polynomial can be obtained by setting s = 0 in

Equation (9). In other words, Dr
u1φ(u1) = (−1)rHr(u1)φ(u1) which implies that H0(u) = u and

H1(u) = u. Then, we can write

u3 + c = H1(u3 + c) =
1∑
i=0

 1

i

 ciH1−i(u3), (A.1.27)

where

 1

i

 denotes the binomial coe�cient. Incorporating Equation (A.1.27) into Equation

(A.1.26), we get

Irsp =
(−1)p

Apap−1
Dr
u1D

s
u2φ(u1)φ (u∗2)

1∑
i=0

 1

i

 ci
∫ ∞
−∞

Hp(u3)H1−i(u3)φ(u3)du3. (A.1.28)

For any x, the orthogonality property of Hermite polynomials allows us to write

∫ ∞
−∞

Hn(x)Hm(x) exp
(
−x2/2

)
dx = n!

√
2πδn,m, (A.1.29)

where δn,m is the Kronecker product, δn,m =

 1 if n = m

0 if n 6= m

. Since δp,1−i = 1⇐⇒ p = 1− i⇐⇒

i = 1− p⇐⇒ p ≤ 1,
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∫∞
−∞Hp(u3)H1−i(u3)φ(u3)du3 =

∫∞
−∞Hp(u3)H1−i(u3)

exp(−u23/2)√
2π

du3

= p!
√

2πδp,1−i
1√
2π

= p! for p ≤ 1 & p = 1− i.
(A.1.30)

Also observe that
∫∞
−∞Hp(u3)H1−i(u3)φ(u3)du3 = 0 for p > 1. Returning to Equation (A.1.28), we

conclude that

Irsp = 0 for p > 1. (A.1.31)

Moreover, substituting Equation (A.1.30) into Equation (A.1.28), we obtain:

Irsp =
(−1)p

Apap−1
Dr
u1D

s
u2φ(u1)φ (u∗2)

 1

1− p

 c1−pp! for p ≤ 1. (A.1.32)

Equivalently,

Irsp =
(−1)p

Apap−1
Dr
u1D

s
u2φ(u1)φ (u∗2)

c1−p

(1− p)!
for p ≤ 1. (A.1.33)

Substituting a
A(b1u1 + b2u2) back instead of c, we obtain

Irsp =
(−1)p

Aa2p−2
1

(1− p)!
Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2)

1−p for p ≤ 1. (A.1.34)

We can conclude from Equations (A.1.12) and (A.1.13) that I1 = I000. Then, we can write I1 as

I1 =
a2

A
φ(u1)φ (u∗2) (b1u1 + b2u2) . (A.1.35)

Setting p = 0 and 1 in Equation (A.1.34), we respectively get:

Irs0 =
a2

A
Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2) , (A.1.36)

and

Irs1 = − 1

A
Dr
u1D

s
u2φ(u1)φ (u∗2) . (A.1.37)

After substituting Equations (A.1.31), (A.1.35), (A.1.36) and (A.1.37) into Equation (A.1.16) and
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doing some manipulations, we get

E(ũ3 | u1, u2)g(u1, u2) = a3φ(u1)φ (u∗2) (b1u1 + b2u2)

+
4∑

r+s=3

(−1)r+s
r!s! Krs0a

3Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2)

+
3∑

r+s=2

(−1)r+s
r!s! Krs1aD

r
u1D

s
u2φ(u1)φ (u∗2) .

(A.1.38)

Since aφ(u1)φ(u∗2) = g(u1, u2), which may be obtained by multiplying Equation (A.1.16) by φ(u1),

Equation (A.1.38) can be written as:

E(ũ3 | u1, u2)g(u1, u2) = a2g(u1, u2) (b1u1 + b2u2)

+
4∑

r+s=3

(−1)r+s
r!s! Krs0a

2Dr
u1D

s
u2g(u1, u2) (b1u1 + b2u2)

+
3∑

r+s=2

(−1)r+s
r!s! Krs1D

r
u1D

s
u2g(u1, u2).

(A.1.39)

Now, let us compute Dr
u1D

s
u2g(u1, u2) (b1u1 + b2u2) via the chain rule:

Dr
u1D

s
u2g(u1, u2) (b1u1 + b2u2) = (b1u1 + b2u2)D

r
u1D

s
u2g(u1, u2)

+ g(u1, u2)D
r
u1D

s
u2 (b1u1 + b2u2) .

(A.1.40)

Observe that Dr
u1D

s
u2(b1u1 + b2u2) = 0 for r + s ≥ 2. Using the formula for bivariate Hermite

polynomials given in Equation (9), we obtain

Dr
u1D

s
u2g(u1, u2) (b1u1 + b2u2) = (b1u1 + b2u2)D

r
u1D

s
u2g(u1, u2)

= (b1u1 + b2u2) (−1)r+sHrs(u1, u2)g(u1, u2)

for r + s ≥ 2.

(A.1.41)

Incorporating Equation (A.1.41) into Equation (A.1.39) and doing some manipulations, we get

E(ũ3 | u1, u2) = a2 (b1u1 + b2u2)

[
1 +

4∑
r+s=3

1
r!s!Krs0Hrs(u1, u2)

]
+

3∑
r+s=2

1
r!s!Krs1Hrs(u1, u2).

(A.1.42)

Note that

1 +

4∑
r+s=3

1

r!s!
Krs0Hrs(u1, u2) = 1. (A.1.43)
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since (u1, u2) ∼ SBVN (ρ12), and the third order cumulants of any multivariate normal distribution

and the fourth order cumulants of any bivariate normal distribution (corresponds to Krso for r+s =

4) are equal to 0 (Stuart and Ord (1994)). Then, Equation (A.1.42) becomes

E(ũ3 | u1, u2) = a2(b1u1 + b2u2) + K201
2 H20(u1, u2) +K111H11(u1, u2)

+ K021
2 H02(u1, u2) + K301

6 H30(u1, u2) + K211
2 H21(u1, u2)

+ K121
2 H12(u1, u2) + K031

6 H21(u1, u2).

(A.1.44)

When we express a, b1 and b2 as in Equations (A.1.2), (A.1.3) and (A.1.4) respectively, we get

Equation (12). Using Equations (A.2.1) and (A.2.2) provided in the Section A.2, and the cumulant

formulas K101 = ρ13 and K011 = ρ23 (Stuart and Ord (1994)), it can be shown that

a2 (b1u1 + b2u2) = K101H10(u1, u2) +K011H01(u1, u2), (A.1.45)

Combining Equation (A.1.45) with Equation (A.1.44), we obtain Equation (11).

A.2 Derivation of V ar(ũ3 | u1, u2)

Since V ar (ũ3 | u1, u2) = E
(
ũ23 | u1, u2

)
− E2 (ũ3 | u1, u2) and we already derived the analytical

solution of E2 (ũ3 | u1, u2), we will initially derive E
(
ũ23 | u1, u2

)
in this subsection. SinceH2(u) =

u2 = 1, we can write

E
(
ũ23 | u1, u2

)
= A2a2+E

(
ũ23 −A2a2 | u1, u2

)
= A2a2+A2a2E

((
ũ3
Aa

)2

− 1 | u1, u2

)
= A2a2+A2a2E

(
H2

(
ũ3
Aa

)
| u1, u2

)
,

(A.2.1)

Now, let us focus on the second term E
(
H2

(
ũ3
Aa

)
| u1, u2

)
. Following the steps in Appendix A.1,

we can write

E

(
H2

(
ũ3
Aa

)
| u1, u2

)
g(u1, u2) = I1 +

4∑
r+s+p=3

(−1)r+s+p

r!s!p!
KrspIrsp. (A.2.2)

where

I1 =

∫ ∞
−∞

H2

( u3
Aa

)
g(u1, u2, u3)du3, (A.2.3)

and

Irsp =

∫ ∞
−∞

H2

( u3
Aa

)
Dr
u1D

s
u2D

p
u3g(u1, u2, u3)du3. (A.2.4)
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Following the same steps used to obtain Equation (A.1.26), we can rewrite Equation (A.2.4) as

Irsp =
1

Apap−1

∫ ∞
−∞

H2(u3 + c)Dr
u1D

s
u2D

p
u3φ(u1)φ (u∗2)φ(u3)du3. (A.2.4)

Observe that H2(u3 + c) = (u3 + c)2− 1 = u23− 1 + 2cu3 + c2 = H2(u3) + 2cH1(u3) + c2H0(u3) since

H1(u3) = u3 and H0(u3) = 1. Hence, we can write

H2(u3 + c) =
2∑
i=0

 2

i

 ciH2−i(u3). (A.2.5)

Incorporating Equation (A.2.5) into Equation (A.2.4), we get

Irsp =
(−1)p

Apap−1
Dr
u1D

s
u2φ(u1)φ (u∗2)

1∑
i=0

 2

i

 ci
∫ ∞
−∞

Hp(u3)H2−i(u3)φ(u3)du3. (A.2.6)

Exploiting the orthogonality property of Hermite polynomails provided in Equation (A.1.29), we

can conclude that ∫ ∞
−∞

Hp(u3)H2−i(u3)φ(u3)du3 = p! for p ≤ 2 & p = 2− i. (A.2.7)

Also observe that
∫∞
−∞Hp(u3)H2−i(u3)φ(u3)du3 = 0 for p > 2, Irsp = 0 for p > 2. Substituting

Equation (A.2.7) into Equation (A.2.6), we get

Irsp =
(−1)p

Apap−1
Dr
u1D

s
u2φ(u1)φ (u∗2)

 2

2− p

 c2−pp! for p ≤ 2. (A.2.8)

Since I1 = I000 and substituting c = a
A(b1u1 + b2u2), we can write

I1 =
a3

A2
φ(u1)φ (u∗2) (b1u1 + b2u2)

2. (A.2.9)

Setting p = 0, p = 1 and p = 2 in Equation (A.2.8), we respectively get:

Irs0 =
a3

A2
Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2)

2, (A.2.10)

and

Irs1 =
−2a

A2
Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2), (A.2.11)

and

Irs2 =
2

A2a
Dr
u1D

s
u2φ(u1)φ (u∗2) . (A.2.12)

Substituting Equations(A.2.9)− (A.2.12) into Equation (A.2.1), we get
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E
(
ũ23 | u1, u2

)
g(u1, u2) = A2a2g(u1, u2) + a5φ(u1)φ (u∗2) (b1u1 + b2u2)

2

+
4∑

r+s=3

(−1)r+s
r!s! Krs0a

5Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2)

2

− 2
3∑

r+s=2

(−1)r+s
r!s! Krs1a

3Dr
u1D

s
u2φ(u1)φ (u∗2) (b1u1 + b2u2)

+ 2
2∑

r+s=1

(−1)r+s
r!s! Krs2aD

r
u1D

s
u2φ(u1)φ (u∗2) .

(A.2.13)

Since the third and fourth order cumulants of any bivariate normal distribution (corresponds to

Krso for r+ s = 3, 4) are equal to 0 and aφ(u1)φ(u∗2) = g(u1, u2), Equation (A.2.13) can be written

as:

E
(
ũ23 | u1, u2

)
g(u1, u2) = A2a2g(u1, u2) + a4g(u1, u2) (b1u1 + b2u2)

2

− 2
3∑

r+s=2

(−1)r+s
r!s! Krs1a

2Dr
u1D

s
u2g(u1, u2) (b1u1 + b2u2)

+ 2
2∑

r+s=1

(−1)r+s
r!s! Krs2D

r
u1D

s
u2g(u1, u2).

(A.2.14)

Using Equation (A.1.41) and doing some manipulations, we get

E
(
ũ23 | u1, u2

)
= A2a2 + a4 (b1u1 + b2u2)

2 − 2 (b1u1 + b2u2)
3∑

r+s=2

1
r!s!Krs1Hrs(u1, u2)

+ 2
2∑

r+s=1

1
r!s!Krs2Hrs(u1, u2).

(A.2.15)

A.3 Expressions for Bivariate Hermite Polynomials

The expressions given below were obtained by solving Equation (9) for various values of r and s

using Maple.

H10(u1, u2) = au∗1, (A.3.1)

H01(u1, u2) = au∗2, (A.3.2)

H20(u1, u2) = −a2 + a2u∗21 , (A.3.3)

H02(u1, u2) = −a2 + a2u∗22 , (A.3.4)

H11(u1, u2) = −a2ρ12 − a2u∗1u∗2, (A.3.5)

H30(u1, u2) = au∗1
(
H20 − 2a2

)
, (A.3.6)

H03(u1, u2) = au∗2
(
H02 − 2a2

)
, (A.3.7)
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H21(u1, u2) = aH11u
∗
1 − a3(u∗2 − ρ12u∗1), (A.3.8)

H12(u1, u2) = aH11u
∗
2 − a3(u∗1 − ρ12u∗2). (A.3.9)

A.4 Moments of the Truncated SBVN Distribution

The moment formulas of the truncated SBVN distribution up to the second order may be found in

Rosenbaum (1961). However, in our independent derivation, we discovered that Rosenbaum (1961)

made a sign error while calculating integrals. Our expressions up to the second order agree with

those in Henning and Henningsen (2007), who cross-check their formulas using numerical integration

and Monte Carlo simulation. We also provide some third order moments of the truncated SBVN

distribution below. The derivations may be obtained from the authors upon request. We denote

the univariate standard normal density and distribution function respectively by φ(.) and Φ(.). Let

Cti = βtiXti for t = 1, 2 for individual i. We suppress the individual subscript throughout the

section to avoid notational clutter. We denote the moments of the truncated SBVN distribution

for the subsample S4 (de�ned in Section 2.1) as mj,k = E(uj1u
k
2 | u1 > −C1,u2 > −C2). Let

q =

√
1− ρ212√

2π
=

1

a
√

2π
, (A.4.1)

q′ = a2q, (A.4.2)

D(C1, C2) ≡ D2 = C2
1 − 2ρ12C1C2 + C2

2 , (A.4.3)

C∗1 (C1, C2) ≡ C∗1 = a(C1 − ρ12C2), (A.4.4)

C∗2 (C1, C2) ≡ C∗2 = a(C2 − ρ12C1), (A.4.5)

C∗∗1 (C1,−C2) ≡ C∗∗1 = C1 + ρ12C2, (A.4.6)

C∗∗2 (−C1, C2) ≡ C∗∗2 = C2 + ρ12C1, (A.4.7)

α(C1, C2) = φ(−C1)Φ(C∗2 ), (A.4.8)
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β(C1, C2) = φ(−C2)Φ(C∗1 ), (A.4.9)

δ(C1, C2) = φ (aD) , (A.4.10)

and

L(C1, C2; ρ12) =

∫ ∞
−C2

∫ ∞
−C1

g(u1, u2)du1du2. (A.4.11)

Then,

m0,1 =
ρ12α(C1, C2) + β(C1, C2)

L(C1, C2; ρ12)
, (A.4.12)

m1,0 =
α(C1, C2) + ρ12β(C1, C2)

L(C1, C2; ρ12)
, (A.4.13)

m0,2 =
L(C1, C2; ρ12)− ρ212C1α(C1, C2)− C2β(C1, C2) + qρ12δ(C1, C2)

L(C1, C2; ρ12)
, (A.4.14)

m2,0 =
L(C1, C2; ρ12)− C1α(C1, C2)− ρ212C2β(C1, C2) + qρ12δ(C1, C2)

L(C1, C2; ρ12)
, (A.4.15)

m1,1 =
ρ12L(C1, C2; ρ12)− ρ12C1α(C1, C2)− ρ12C2β(C1, C2) + qδ(C1, C2)

L(C1, C2; ρ12)
, (A.4.16)

m0,3 = 1
L(C1,C2;ρ12)

[2L(C1, C2; ρ12)m0,1 +
(
ρ12
(
1− ρ212

)
+ ρ312C

2
1

)
α(C1, C2)

+ C2
2β(C1, C2)− qρ12C∗∗2 δ(C1, C2)],

(A.4.17)

m3,0 = 1
L(C1,C2;ρ12)

[2L(C1, C2; ρ12)m1,0 +
(
ρ12
(
1− ρ212

)
+ ρ312C

2
2

)
β(C1, C2)

+ C2
1α(C1, C2)− qρ12C∗∗1 δ(C1, C2)],

(A.4.18)

m1,2 = 1
L(C1,C2;ρ12)

[2ρ12L(C1, C2; ρ12)m0,1 + ρ12C
2
2β(C1, C2)

+ (1− ρ212 + ρ212C
2
1 )α(C1, C2)− qC∗∗2 δ(C1, C2)],

(A.4.19)

m2,1 = 1
L(C1,C2;ρ12)

[2ρ12L(C1, C2; ρ12)m1,0 + ρ12C
2
1α(C1, C2)

+ (1− ρ212 + ρ212C
2
2 )β(C1, C2)− qC∗∗1 δ(C1, C2)].

(A.4.20)
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A.5 Expressions of λ's

We obtain formulas below using Equation (12) and the formulas provided in Appendices A.3 and

A.4 via a Maple code.

λ1 =
α(C1, C2)

L(C1, C2; ρ12)
, (A.5.1)

λ2 =
β(C1, C2)

L(C1, C2; ρ12)
, (A.5.2)

λ3 =
−C1α(C1, C2)− qρ12δ(C1, C2)

L(C1, C2; ρ12)
, (A.5.3)

λ4 =
−C2β(C1, C2)− qρ12δ(C1, C2)

L(C1, C2; ρ12)
, (A.5.4)

λ5 = − qδ(C1, C2)

L(C1, C2; ρ12)
, (A.5.5)

λ6 =
−α(C1, C2) + C2

1α(C1, C2) + qρ12 (aC∗1 + C1) δ(C1, C2)

L(C1, C2; ρ12)
, (A.5.6)

λ7 =
−β(C1, C2) + C2

2β(C1, C2) + qρ12 (aC∗2 + C2) δ(C1, C2)

L(C1, C2; ρ12)
, (A.5.7)

λ8 = −aqC
∗
1δ(C1, C2)

L(C1, C2; ρ12)
, (A.5.8)

λ9 = −aqC
∗
2δ(C1, C2)

L(C1, C2; ρ12)
. (A.5.9)

A.6 Expressions of λ's for Tunali and Baslevent's (2006) Problem

Let σ12 = σ1σ2ρ12, σ11 = σ21 and σ22 = σ22. When (u1, u2) ∼ SBVN (ρ12), (σ1u1, σ1u1 + σ2u2) ∼

BVN (0, 0, σ11, a
2, e) where a =

√
σ11 + σ22 + 2σ12 and e = σ11 + σ12. Let b = σ22 + σ12. Denote

the probability of LFP = j by Pj and the standard bivariate normal cumulative distribution

function with upper thresholds s1, s2 and correlation coe�cient r by Φ(s1, s2; r). Assume that state

probabilities are given as:

P0 = Φ(C01, C02;C03), (A.6.1)

P1 = Φ(C11, C12;C13), (A.6.2)

P2 = Φ(C21, C22;C23), (A.6.3)
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P3 = 1− P0. (A.6.4)

Unemployment probability follows from the adopted de�nition. Considering the categorical

variable LFP in Equation (20), observe that

P0 = P (y∗1 < 0, y∗1 + y∗2 < 0) = P
(
σ1u1 < −β

′
1z, σ1u1 + σ2u2 < −

(
β
′
1 + β

′
2

)
z
)

= P

(
u1 <

−β′1z
σ1

, σ1u1+σ2u2a <
−
(
β
′
1+β

′
2

)
z

a

)
.

(A.6.5)

P1 = P (y∗1 > 0, y∗2 < 0) = P
(
σ1u1 > −β

′
1z, σ2u2 < −β

′
2z
)

= P

(
u1 >

−β′1z
σ1

, u2 <
−β′2z
σ2

)
= P

(
u1 <

β
′
1z
σ1
, u2 <

−β′2z
σ2

)
.

(A.6.6)

P2 = P (y∗2 > 0, y∗1 + y∗2 > 0) = P
(
σ2u2 > −β

′
2z, σ1u1 + σ2u2 > −

(
β
′
1 + β

′
2

)
z
)

= P

(
u2 >

−β′2z
σ2

, σ1u1+σ2u2a >
−
(
β
′
1+β

′
2

)
z

a

)

= P

(
u2 <

β
′
2z
σ2
, σ1u1+σ2u2a <

(
β
′
1+β

′
2

)
z

a

)
.

(A.6.7)

In Equations (A.6.5) through (A.65.7), we rescaled the variables to have unit variances by divid-

ing them to their standard errors. Observe that for LFP = 0, correlation will be Cov(σ1u1,σ1u1+σ2u2)√
V ar(σ1u1)

√
V ar(σ1u1+σ2u2)

=

e
aσ1

; for LFP = 1, it will be − Cov(σ1u1,σ2u2)√
V ar(σ1u1)

√
V ar(σ2u2)

= − σ12
σ1σ2

; and for LFP = 2, it will be

Cov(σ2u2,σ1u1+σ2u2)√
V ar(σ2u2)

√
V ar(σ1u1+σ2u2)

= b
aσ2

. Hence, we can write

C01 =
−β′1z
σ1

, C02 =
−
(
β
′
1 + β

′
2

)
z

a
, C03 =

e

aσ1
, (A.5.8)

C11 =
β
′
1z

σ1
, C12 =

−β′2z
σ2

, C13 = − σ12
σ1σ2

, (A.5.9)

C21 =
β
′
2z

σ2
, C22 =

(
β
′
1 + β

′
2

)
z

a
, C23 =

b

aσ2
. (A.5.10)

Changing all C1's to C21,all C2's to C22, and all ρ12's to C23 in the formulas provided in Appendix
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A.4, we obtain the expressions for λ's in context of Tunali and Baslevent's (2006) problem.
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