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Abstract

On December 1st, 2009 President Obama announced that the U.S. troops would have started
leaving Afghanistan on July 2011. Rather than simply waiting “the U.S. troops out,” the Taliban
forces responded with a spike in attacks followed by a decline as the withdrawal date approached.
These, at first, counter-intuitive phenomena, are addressed by studying a two-player, zero-sum
game where the duration of the strategic interaction is either known or unknown to players. We
find that under known duration, players’ equilibrium strategies depend on the time remaining
in the game and their relative positions at that time of play. Under unknown duration the
equilibrium strategies are independent of time and continuation probability. We test the model
on data available for soccer matches in the major European leagues. Most importantly, we
exploit a change in rule adopted by FIFA in 1998 requiring referees to publicly disclose the
length of the added time at the end of the 90 minutes of play. We study how the change in rule
has affected the probability of scoring both over time and across teams’ relative performance
and find that the rule’s change led to a 28% increase in the probability of scoring during the
added time.
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Huerta for valuable comments. We benefited from conversations with Christoper Tuck of the British Military Staff
College and U.S. Army Colonel Michael Musso.

1



1. Introduction

In many instances actors and observers recognize that knowing the exact length of a game-strategic

interaction matters, independently of the length itself. By fixing the duration, the parties not only

know that the game will end at a certain point in time, but they also know that it will not end

before then. This is in contrast to the case where the game might be over at any point in time.

This paper shows that players’ equilibrium behavior in a game with a known fixed duration is

qualitatively different than in a game with unknown duration.

An army involved in a foreign country intervention is a case in point. The duration of an armed

conflict might be either uncertain or fixed. The uncertainty might be simply due to lack of infor-

mation about how long it would take to resolve the conflict or lack of public or political support.

Alternatively, the length of the involvement might be exogenously fixed, e.g., by the budgetary

decision of a political body.1 Regardless of the reason for fixing the length of the involvement, the

parties usually recognize that whether the duration is fixed or unknown affects their equilibrium

behavior. The Iraq and Afghanistan wars are good examples to demonstrate this point. In both

cases the American high command and politicians alike were very much aware of the implications

of announcing a definite withdrawal date, as fixing the troops’ repatriation essentially fixes the

conflict’s length, thereby changing the nature of the game from unknown to known duration.2 In

anticipation of a subsequent change in both parties’ strategies, the U.S. withdrawal announcement

was either preceded by or made contemporary to a surge in troops deployment. Specifically, in

the case of Iraq, in preparation of the agreement to hand over to the new Iraqi forces the control

of the territory,3 President Bush ordered a surge in troops in June, 15th 2007. In the case of

Afghanistan, President Obama insisted that the announcement of both the troops surge (30,000

troops) as well as the beginning of the withdrawal (July 2011) would occur at the same time.4

Indeed, both announcements were made during the same speech at West Point on December 1st,

2009 (White House (2009)).5

1In this paper we will not analyze the case where the duration is part of players’ optimal choice.
2Among the main points of Senator Obama’s first presidential campaign was the setting of a date for troops’ with-

drawal from Iraq: http://www.washingtonpost.com/wp-dyn/content/article/2007/01/30/AR2007013001586.html.
3This was later named the U.S. - Iraq Status of Forces Agreement which fixed the U.S. complete withdrawal to De-

cember 31, 2011. This date was later on postponed. For a timeline of the events see http://www.reuters.com/article/
2011/12/15/us-iraq-usa-pullout-idUSTRE7BE0EL20111215.

4For an account of President Obama’s decision of a surge and a withdrawal, see Baker (2009).
5This major surge was preceded by an increase in troops of minor entity in February 17, 2009 (17000 troops) and

in March 27th, 2009 (4000 troops).
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Woodward (2010) reports that President Obama had anticipated a surge in attacks following his

West Point speech.6 Consistent with his expectations, informed observers of the Afghanistan con-

flict have noticed a discontinuous change in the strategy of the Taliban army in response to Obama’s

announcement to fix the duration of the involvement of the U.S. forces. The two plots in Figure

1 provide some evidence for these claims. Figure 1(a), published by the NATO’s Afghanistan As-

sessment Group, plots the “Enemy Initiated Attacks” (EIA) by Taliban forces across the period

January 2008 - September 2012.7 Abstracting from seasonality due to the Afghan winter, the

figure shows a spike in attacks after the first announcement of troops withdrawals made in Novem-

ber 2009 (Afghanistan Assessment Group (2012)) followed by a gradual decrease in the number

of incidents. Figure 1(b) shows the number of attacks on coalition forces by Afghan forces - the

so-called “Green-on-Blue” attacks - for the period of September 2008 to June 2013 and includes the

date of the second announcement made by the U.S. President (June 22nd, 2011) postponing the

U.S. withdrawal to July 2014 along with a troops reduction starting in the following month. The

data are consistent with Roggio and Lundquist (2012)’s claim that the number of “Green-on-Blue”

attacks “[. . . ] began spiking in 2011, just after President Barack Obama announced the plan to pull

the surge forces, end combat operations in 2014, and shift security to Afghan forces. The Taliban

also have claimed to have stepped up efforts at infiltrating the Afghan National Security Forces.”8

These reactions might at first appear counterintuitive. In particular, why did “announcing a

timetable for a withdrawal” prompt a surge in attacks by the opponents’ army rather than “merely

send the Taliban underground until the Americans began to leave,” as predicted by Senator Mc-

Cain in his comment to the West Point speech (PBS (2009))? Similarly, why did President Obama

announce a surge in troops concurrently to fixing the duration of the involvement? More generally,

why does announcing the duration of the game result in such a discontinuous change in players’

behavior?

Armed conflicts are inherently complex. Consequently, we do not attempt a comprehensive ratio-

nalization of such intricate events. Rather, we explain why and how knowing versus not knowing

6“There is going to be tough, tough fighting in the spring and summer, he added. Anticipate a rise in casualties.”
(Woodward (2010), p.326). Thanks to Christopher Tuck for pointing this quote out.

7In the background (light blue) the total number of EIA. The red bars represent an increase of monthly EIA
compared to the same month the year before; blue bars represent a decrease. The changes over three month periods
are depicted at the top of the chart. Data Source: Afghan Mission Network (AMN) Combined Information Data
Network Exchange (CIDNE) Database, as of 18 Sep 2012.

8This claim appears in The Long War Journal, among the most comprehensive, available data collection on the
attacks conceded by the U.S. troops in the Afghan war.
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(a) Year-to-year changes in EIA (b) Green-on-Blue Attacks Afghanistan

Figure 1: Number of Attacks over Time

the duration of a strategic interaction affects equilibrium actions. We start by modeling a two-

player, zero-sum game where players’ actions can be classified according to their governance as

“attack” or “defense.” We assume that all actions require the same level of effort but differ in their

probability of success and in the probability of counteracting a successful action by the rival. We

study the game under two alternative settings: i) fixed known duration; and ii) unknown duration

with a strictly positive probability that at each time of play the game will end in the next period.

We characterize the players’ optimal strategies which determine the probability of their respective

actions to be successful and then study how they change over time and across players’ relative

positions (i.e., across differences in the number of successful actions).

We find that conditional on the players’ relative position, in a known duration game the equilibrium

dynamics of the probability of a successful action is non-stationary. The non-stationarity can be

monotonic or non-monotonic, depending on the shape of the probability function. In contrast, in

an unknown duration game, the dynamics of the probability of a successful action is stationary.

Importantly, this implies not only time independence but also independence from the continuation

probability (the probability that the game will continue to the next period). This in turn implies

that the equilibrium for unknown duration games does not approach the equilibrium for known

duration games as the continuation probability is close to one. Still, the probability of a successful

action in unknown duration games depends on the players’ relative position. We characterize the

equilibrium accordingly.

In order to validate the model we exploit the unique opportunity for a natural experiment offered
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by a change in the rules of the soccer game introduced in 1998 and concerning the time added

to the regular time (RT hereafter) in order to recoup any lost minutes during the play, called the

added time (AT hereafter). Contrary to the previous regulation, where players did not know with

certainty the length of the AT till the referee’s whistle was blown, the new rule requires the referee

to make the duration of the AT publicly known to players and spectators alike at the end of the

RT. In doing so the endgame duration becomes fixed and common knowledge.

We test the prediction of the model on the behavior of the probability of scoring a goal both over

time, given the goal differences, and across goal differences, given the time of play. Being the RT a

known duration game, we first exploit the availability of the minute-by-minute data for the matches’

RT to validate our predictions for known duration games. Consistently with the theoretical model,

the empirical analysis shows that during the RT the probability of scoring a goal has an inverted-U

shape dynamics over time. For the AT, only data on the total (rather than the minute by minute)

number of goals are available. Nevertheless, given the shape of scoring over time in the RT game,

we are able to predict the change in rule would increase the number of goals scored during AT.

Indeed we find that the average number of goals during the AT is 0.101 and 0.128 for the pre- and

post-1998 seasons, respectively, representing a statistically significant increase of 28%. Finally, we

find that the probability of scoring a goal during the AT is stationary over the teams’ position (in

terms of goal difference) .

Our analysis is related to several strands of literature. First is the literature of bargaining games

with deadlines (e.g., Spier (1992); and Yildiz (2011)). We argue that knowing the duration of a

game is not equivalent to having a deadline as the latter does not prevent the game from stopping

beforehand. Consequently, we prefer to adopt the terminology of duration and clearly separate our

analysis and results from the deadline effects found in the literature.

There is a large body of work on finite vs. infinitely repeated games (e.g., Aumann and Shapley

(1994); Rubinstein (1979); and Fudenberg and Maskin (1986)). The strategic situation we study,

however, is different than the repeated game setup. Specifically, in our setting the players’ final

payoff depends on their actions in each period but are not the sum or the average of each period’s

outcomes. Furthermore, in contrast to the zero-sum nature of our game, the repeated games

literature focuses on the incentives to coordinate. These differences explain the contrasting results

in our paper and Dal Bó (2005) who studies, in an experimental set up, the equilibrium outcome

5



in a finite vs. infinitely repeated prisoner’s dilemma game with a random continuation rule. His

result showing that the probability of continuation matters for cooperation is driven by the higher

expected punishment for deviators when the expected duration of the game is longer.9

Our model shares more the features of a sequential tournament, and specifically the case of tour-

naments where agents choose the level of risk.10 This literature examines players risk taking as

a function of their position in the race. Modelling risk taking, Cabral (2003) finds that leaders

choose the safe path while laggards the risky one. This view is also supported by González-Dı́az

and Palacios-Huerta (2014) in the context of chess tournaments. Hvide (2002) shows that if agents

choose both the level of risk and the level of effort, it is possible to limit the risk level agents choose

and induce higher effort. While it is easy to frame players’ preference in our model in terms of risk

and return, this requires additional assumptions on the probability function in order to link the

action level to risk taking and would consequently limit the generality of our results.

The literature on the act of sabotage where players expend some of their resources for “the act

of raising rivals costs” represents another strand of existing work to which our paper is related.11

In the Spanish football context, for example, Garicano and Palacios-Huerta (2014) find that in-

creasing the number of points awarded for a win resulted in an increase in the amount of sabotage

effort undertaken by teams, measured by the number of fouls, yellow cards and red cards. Allowing

players to choose how to allocate their effort between acts that increase one’s own probability of

success and acts of sabotage adds complexity to the game. Given that, as far as we are aware,

this is the first paper to study behavior under known and unknown duration games, we leave the

question on the effect of sabotage for further research.

A particularly interesting link is to the literature on demand for suspense (i.e., Eli, Frankel and Ka-

menica (2013)) . We find that games of known duration display swings in optimal actions between

attack and defense. Such swings correspond to higher suspense in known duration vs. unknown

duration games. Interestingly, this suggests that FIFA’s decision to require the communication of

the length of the added time has led to two positive outcomes: more goals and more suspense.

9See also the literature on repeated trust games, e.g., Engle-Warnick and Slonim (2004).
10This is in contrast to the literature on tournaments where agents choose effort levels. See for example, Lazear

and Rosen (1981) and Nalebuff and Stiglitz (1983), among many others.
11See Chowdhury and Gurtler (2013) for definition and survey of the literature.
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2. The game

Consider a game played by two players A and B, over time t = 1, 2, . . . . At each t, each player

contemporary chooses an action, a ∈ A = [0, 1] by player A and b ∈ B = [0, 1] by B. We

interpret higher values of the action as offensive play (or attack) and lower values as defensive

play (or defense). At each t players’ actions jointly determine the probability of the realization

of the random variable x = −1, 0, 1 at that t. Specifically, x = 1 if player A’s action has been

successful, x = 0 if neither players’ action has been successful and x = −1 if player B’s action has

been successful. The probability px associated with the realization x is a function of both players’

actions and is defined as:

px : A×B → (0, 1), x = −1, 0, 1. (1)

All actions require the same level of effort and bear the same direct costs or disutility. Equivalently,

assume they bear no cost.12 In addition, we assume the following:

Assumption 1. 1. In the interior on the action set, the probability of each player’s successful

action is increasing in both a and b, i.e., for (a, b) ∈ IntA× IntB:

∂apx(a, b) > 0 and ∂bpx(a, b) > 0, x = −1, 1. (2)

2. At the boundaries of the action set, the marginal probability of a successful action by players A

and B is such that:

∂ap1(1, b) = ∂ap−1(0, b) = 0; (3)

∂bp1(a, 0) = ∂bp−1(a, 1) = 0. (4)

3. The probability of a successful action is concave in each player’s own action and convex in the

opponent’s action, i.e.,

∂2ap1(a, b) < 0 and ∂2b p−1(a, b) < 0; (5)

∂2ap−1(a, b) > 0 and ∂2b p1(a, b) > 0, (6)

and the cross derivatives ∂2abpx and ∂2bapx are different than 0.

Assumption 1.1 implies that a player choosing a higher action increases both his own and the

12Defending typically requires high effort, so there is no direct relationship between the action level and effort level
in our model, e.g., action a = 0 does not mean inaction. We impose no conditions on the value at px(0, 0) and in
particular we do not assume that px(0, 0) = 0, x = −1, 1.
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opponent’s probability of a successful action; the latter representing an implicit cost of attacking.

This assumption is meant to capture circumstances where a more offensive action increases the

odds of success but weakens the defense level. This trade-off between offense and defense is typical

in conflictual situations where one can identify actions of attack or defense. In armed conflicts, for

example, an offensive action increases both the chances of inflicting casualties to the enemy and

of suffering casualties. In soccer, playing in attack implies an increasing chance of scoring as well

as conceding a goal by counter-attack. Assumption 1.2 provides sufficient conditions for obtaining

an equilibrium of the game. Assumption 1.3 implies that the marginal probability of a successful

action decreases in the player’s own action level and increases in the opponent’s action level as well

as guaranteeing concavity of the players’ objective function.

The game is zero-sum. Let d denote the difference in the number of successful actions from player

A’s perspective. At the end of the game, player A’s value from the game is 1 if the difference in

successful actions is positive, 0 if nil and -1 if negative, i.e., player A receives a value:

V (d) = I {d ≥ 0} − I {d ≤ 0} , (7)

where I denotes the indicator function. Player B receives a value −V (d).13

We can now proceed in analyzing the game when the duration is known, i.e., fixed stopping time,

and subsequently (Section 2.2) when the duration is unknown and the game can end at any time

with positive probability, i.e., random stopping time. All proofs are in the Appendix.

2.1 Known duration: fixed stopping time

Suppose that both players know that the game will last till t = T, i.e., it will end at t = T and not

before. Let V A(t, d) and V B(t, d) be the values of the game for player A and B, respectively, at

time t < T , where (t, d) is the state variable identifying the time of play t and the difference in the

number of successful actions d at that point in time. Hence, for t = T , V (T, d) = V (d). For any

t < T, the players’ optimal actions are the solution to the following system of equations:

V A(t, d) = max
a

1∑
x=−1

px(a, b∗(t, d))V A(t+ 1, d+ x); (8)

V B(t, d) = max
b

1∑
x=−1

px(a∗(t, d), b)V B(t+ 1, d+ x), (9)

13These values are for simplicity. The results hold for any increasing function in d that is symmetric around zero.
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where a∗(t, d) and b∗(t, d) are the argmax of (8) and (9), respectively. The sequence (a∗(t, d), b∗(t, d) :

t = 0, . . . , T, d ∈ N) represents the (Markov perfect) equilibrium of the game of length T .

Notice that given d, the value of the game for player B at t = T − 1 is given by:

V B(T − 1, d) =
1∑

x=−1
px(a∗(T, d), b∗(T, d))V (d+ x)

=
1∑

x=−1
px(a∗(T, d), b∗(T, d))(−V (d+ x)) = −V A(T − 1, d).

Working backward the same holds for t = T − 2 and hence at any (t, d), V B(t, d) = −V A(t, d). We

simplify notation by dropping the superscript and refer to V (t, d) = V A(t, d) as the value of the

game at (t, d).

For each t, let us define two absorbing states (t, d(t)) and (t,−d(t)) where d(t) and −d(t) are the

minimum difference in the number of successful actions necessary for either player A (for d = d(t))

or player B (for d = −d(t) < 0) to ensure victory at time t. Specifically, we let d(t) = T − t + 1.

Reaching an absorbing state implies that there is not enough time for the lagging player to catch

up or win. Once an absorbing state is reached, the value of the game is fixed either at 1, if player

A is winning or at -1 if player B is winning.

Lemma 1. An equilibrium for the game exists. Specifically, at any (t, d) : 1. if |d| < d(t)− 1, the

equilibrium actions are unique and in the interior, i.e., (a∗(t, d), b∗(t, d)) ∈ IntA× IntB;

2. if d = d(t)−1 then (a∗(t, d), b∗(t, d)) = (0, 1) and if d = −(d(t)−1) then (a∗(t, d), b∗(t, d)) = (1, 0);

3. if |d| ≥ d(t), the equilibrium actions are indeterminate.

Part 1 of the lemma states the existence and uniqueness of the equilibrium when the state of the

game is away from the boundaries. Uniqueness also implies that there exists a function β : A→ B

such that β(a∗) = b∗ with ∂aβ(a)|a=a∗ < 0. Part 2 identifies the behavior “one successful action

away” from an absorbing state. For an intuition of players’ behavior in this case consider the state

(t, d) = (T − 1, 1), i.e., players have only one period left to play and player A is ahead. Player A

can choose a relatively offensive action (a > 0) in order to try to increase the probability of state

(T, 2); i.e., the game ends with player A leading by 2 successful actions. At the same time, this

increases the risk of state (T, 0) where the game ends in a tie. Alternatively, player A can choose

a more defensive strategy, for example, set a = 0 and maximize the probability of (T, 1). Since

V (2) = V (1) = 1, and since setting a = 0 minimizes the probability of conceding a successful action,
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the latter strategy is optimal. Similarly, player B can either set b = 1 and maximize the probability

of (T, 0) (along with increasing the probability of (T, 2)) or set b < 1 and increase the probability

of (T, 1). Since V (0) < V (1) = V (2) the first strategy dominates for player B. Finally, Part 3 of

the lemma refers to the case where the game has reached an absorbing state. It is not surprising

that the actions are indeterminate in this case as the value of the game cannot be changed while

all action levels bear the same cost.

For the remaining part of this section we turn to the characterization of the interior equilibrium of

a known duration game, i.e, at all states (t, d) such that |d| < d(t) − 1. To this end we to define

player A’s relative elasticity of success for a given action pair (a, b) as the following ratio:14

εA(a, b) =
∂ap1(a, b)/p1(a, b)

∂ap−1(a, b)/p−1(a, b)
. (10)

The relative elasticity of success for player B, εB(a, b), can be defined in a similar way.

The variable εA(a, b) represents the player’s odds of achieving a successful action relative to con-

ceding one. If εA(a, b) > 1 then an increase in the action by player A, i.e., becoming more offensive,

improves the player’s relative odds of achieving a successful action as compared to conceding one.

Similarly, εA(a, b) < 1 implies that decreasing the level of A’s action, i.e., becoming more defensive,

improves the player’s relative odds of preventing player B’s successful action compared to the odds

of achieving one. Accordingly, we say that at (a, b) player A has a relative advantage in attacking

(defending) if εA(a, b) > 1 (εA(a, b) < 1). Similarly for player B.

Let us express the functions of the equilibrium actions (a∗(t, d), b∗(t, d)) directly as functions of the

state, e.g., p∗x(t, d) = px(a∗(t, d), b∗(t, d)) and εA∗(t, d) = εA(a∗(t, d), b∗(t, d)).

Lemma 2. At equilibrium, the relative elasticity of success equals the ratio of the expected losses

of conceding a successful action to the expected gains of realizing one, i.e.,

εA∗(t, d) =
p∗−1(t, d) [V (t+ 1, d)− V (t+ 1, d− 1)]

p∗1(t, d)[V (t+ 1, d+ 1)− V (t+ 1, d)]
. (11)

The interpretation of equation (11) is straightforward. A change in action has costs and benefits

related to the change in the probability of conceding and realizing a successful action, and accord-

14Accordingly, one could define the term ∂ap1(a, b) a
p1(a,b)

as player A’s elasticity of a successful action and

∂ap−1(a, b) a
p−1(a,b)

as the elasticity of conceding a successful action.
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ingly changes the value of the game. In equilibrium, player A sets his action exactly at the point

where the relative elasticity of success equals the ratio of the expected marginal costs and benefits.

This property will be important for identifying the equilibrium trajectory across d and over t.

By equation (11) it is easy to show that at an interior solution εA∗(t, d) = [εB∗(t, d)]−1 and hence

that at any given point on the equilibrium trajectory only one player can have a relative advantage

in attacking and only one a relative advantage in defending.

Before proceeding to the next lemma, let us denote by A+(b) = {a : εA(a, b) > 1} the set of player

A’s actions such that, given action b, player A has a relative advantage in attacking. Similarly let

A−(b) = {a : εA(a, b) < 1}.15 Also, let A∗+(t, d) = A+(b∗(t, d)) = {a : εA(a, b∗(t, d)) > 1}.

Lemma 3. 1. At any t the value function is monotonically increasing in d, i.e., V (t, d+1) > V (t, d).

2. if a∗(t, d) ∈ A∗+(t, d) then given d the value function is monotonically increasing in t, i.e.,

V (t+ 1, d) > V (t, d). The opposite holds for a∗(t, d) ∈ A∗−(t, d).

Part 1 of the lemma implies that in the interior the marginal value of a successful action is always

positive. Part 2 states that “shortening the game”, i.e., getting one period closer to the end, has

positive marginal value for the player with the relative advantage in attacking. Viceversa for the

opponent. The claim follows from rearranging equation (8) to obtain:

marginal value of time︷ ︸︸ ︷
V (t+ 1, d)− V (t, d) = (12)

expected losses︷ ︸︸ ︷
p∗−1(t, d)[V (t+ 1, d)− V (t+ 1, d− 1)]−

expected gains︷ ︸︸ ︷
p∗1(t, d)[V (t+ 1, d+ 1)− V (t+ 1, d)] .

The equation shows that the marginal value of time is positive if the expected losses from playing

an additional time period are greater than the expected gains. By equation (11) this holds for the

player with the relative advantage in attacking. Lemma 3 leads to the following proposition:

Proposition 1. 1. Player A’s equilibrium action decreases in d at any given t, i.e., a∗(t, d+ 1) <

a∗(t, d);

2. If a∗(t, d) ∈ A∗+(t, d), player A’s equilibrium action decreases in t at any given d, i.e., a∗(t+1, d) <

15Notice that, apart for degenerate cases, A∗+(t, d) ∪ A∗−(t, d) is non empty. E.g., the case ε(t, d) = 1 for all t can
occur when d = 0 and when teams are exactly symmetric, i.e., the functional forms of p1 and p−1 are symmetric.
Clearly a degenerate case.
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a∗(t, d); The opposite holds if a∗(t, d) ∈ A∗−(t, d).

Player B’s equilibrium action behaves symmetrically.

The result is driven by the assumption that attacking increases the risk of conceding a successful

action. In particular, the proposition follows from the fact that the action is inversely related to

the value of the game. Across d, since the value of the game increases in d then the action decreases

at the same time. The leading player, i.e., the player with higher value of the game, will be more

conservative and conversely the losing player more aggressive. Over time, however, this holds only

if the expected losses are greater than the expected gains. The player with a relative advantage in

attacking chooses a high action at the beginning or, equivalently, reduces his action as the end of

the game becomes closer.16 Viceversa for the other player. 17

Proposition 1 offers a suggestive interpretation of why Senator McCain’s prediction of the Taliban

army waiting the U.S. troops out following President Obama’s announcement did not materialize.

Figure 1.a in the introduction shows a behavior that is consistent with Proposition 1.2. The

announcement prompted a spike in Enemy Initiated Attacks followed by a gradual decrease in the

subsequent years. Indeed, the announcement represented the beginning of a known duration game.

Moreover, if it is reasonable to assume the Taliban had an advantage in attacking in the period right

after the announcement then such a response is consistent with the optimal strategy of the player

with advantage in attacking in a known duration overtime. This view is supported by Obama’s

comment on the necessity of breaking the Taliban’s momentum with a surge in troops.18

2.2 Unknown duration: random stopping time

Suppose now that the players do not know the exact duration of the game and at each time t they

assign a probability πt that the game might continue to the next period, t+1. Equivalently, assume

that at each t there is a probability 1 − πt that the game might stop at t. We assume πt to be

strictly positive and less than 1, i.e., letting π = supπt we assume:

Assumption 2. The continuation probability πt is such that 0 < πt ≤ π < 1.

16The result is consistent with the empirical observation in the soccer context by Garicano and Palacios-Huerta
(2014) where they observe that “[. . . ] when a team is ahead it deploys a strategy aiming at conserving the score
relative to the possibility of scoring more goals.”

17Proposition 1 has very similar properties of a unit root process in t and d of the type: zt−1,d =
∑1

x=−1 qxzt,d+x

where
∑1

x=−1 qx = 1 and the terminal condition is given by zT,d = d. By backward induction this process has a
non-stationary solution for q1 6= q−1 given by z∗t,d = (q1 − q−1) (T − t) + d.

18See Woodward (2010), p.329, “[...] ‘We have to break the momentum of the Taliban’ [Obama] said.”
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Notice that we allow πt to be t-dependent, so it needs not be constant and might be decreasing

overtime. Also, πt is bounded away from 0 as this would imply that the game stops with certainty

at time t.19

Since the stopping time of this game is random this is an infinite horizon stochastic zero-sum

game.20 Let WA(t, d) (WB(t, d)) denote the value of the game for player A (B) in state (t, d).

Recall that once the game ends, the value for player A is given by V (d) and for player B is given

by −V (d), where V (d) is as in (7). We can then recursively write the value functions as:

WA(t, d) = πt max
a

{ 1∑
x=−1

px(a, b̃(t, d))WA(t+ 1, d+ x)
}

+ (1− πt)V (d); (13)

WB(t, d) = πt max
b

{ 1∑
x=−1

px(ã(t, d), b)WB(t+ 1, d+ x)
}
− (1− πt)V (d), (14)

where the values ã(t, d) and b̃(t, d) are the equilibrium solutions to (13) and (14).21 The following

proposition characterizes the equilibrium actions for a game of unknown duration.

Proposition 2. The equilibrium actions of the unknown duration game are t and πt-independent.

Specifically: 1. for d = 0 they are equal the known duration game equilibrium actions at T − 1 ,

i.e., (ã(t, 0), b̃(t, 0)) = (a∗(T − 1, 0), b∗(T − 1, 0)).

2. for d > 0 they are given by (ã(t, d), b̃(t, d)) = (0, 1) and for d < 0 by (ã(t, d), b̃(t, d)) = (1, 0).

Proposition 2 has several important implications. First and most importantly the stationarity22 of

the solution implies that removing the certainty about the duration of the game changes players’

optimal behavior qualitatively and discontinuously: qualitatively because their behavior becomes

stationary; discontinuously because it is independent of the level of uncertainty, i.e., the stopping

probability πt. Mathematically, when the duration is uncertain the contraction mapping theorem

holds and we can then identify a stationary solution. The independence from the continuation

probability, though surprising, is not different from the standard independence of the policy function

from the time discounting in dynamic programming. Similarly, the discontinuity in the action choice

19The latter is not equivalent to the known-duration game analyzed in the previous section as that case requires
πt = 1 for all t < T .

20E.g., see Parthasarathy and Raghavan (1971).
21The tilde distinguishes these solutions from the solutions to (8) and (9) .
22Walker, Wooders and Amir (2011) analyze stationary equilibria in unknown duration games. Their analysis

focuses on binary Markov games.
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from known to unknown duration games is not dissimilar from the well-known problem of analysis

of unit roots of AR(1) processes in time series analysis. More intuitively, the action players take

at t can affect the game only if it continues to the next period t + 1 so the continuation value is

the only part of the problem that matters, independently of its likelihood (as long as it is greater

than zero). By the same token, stationarity follows from the fact that given d, at each t, players

look only one period ahead as they know that, given d, they would face the same problem in the

following period. That is, given d, the problem is t-independent.23

2.3 Characterizing the probability of successful actions

The previous sections have provided a characterization of players’ equilibrium actions. However, in

many instances only the actions’ outcomes or consequences are observable (i.e., the realization of

x) and not the actions themselves. In the case of armed conflicts, records of the attacks (actions) of

the armies involved are rarely available and only data on casualties (outcomes) might be recorded.

Similarly, in the soccer game, until recently only goals were recorded rather than the players’

actions themselves. Nevertheless, by observing outcome x across different d and over time t one

may recover the probability of the outcomes, p∗x(t, d). In this section we show that the results

obtained thus far on the equilibrium actions provide testable hypotheses on the behavior of the

probability of a successful action without further restrictions beyond Assumption 1. Moreover, we

show that monotonicity in equilibrium actions does not necessarily translate into monotonicity of

the probability of success. In the next section we study a specific functional form of the probability

function in order to better characterize its possible trajectories.

We start by looking at changes in the equilibrium probability in known duration games, p∗x(t, d),

over t and across d. Recall that according to Lemma 1.1, player B’s equilibrium action can be

written as b∗(t, d) = β(a∗(t, d)). This implies that the equilibrium probability can be written as

a function of a∗(t, d) only, i.e., abusing notation px(a∗(t, d)). In the interior solution of a known

duration game, changes to the probability of a successful action due to changes in t and d can be

computed as follows:

23Proposition 2 can also be explained by looking at well known properties mixed processes of the type z̃t−1,d =
πt

∑1
x=−1 qxz̃t,d+x + (1 − πt)d. By contraction mapping the process is stationary with solution z̃∗d = (q1 − q−1) + d.

The solutions of the process analyzed in footnote 17 and z̃∗d coincide at t = T − 1 and if q1 = q−1 this holds for all t.
Equation (13) describes a mixed process in t with d given by the payoff W (d). The non-stationarity of the dynamics
of the solutions to the process in (13) simply follows from the above observation.
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p∗x(t, d+ 1)− p∗x(t, d) ≡ ∆dp
∗
x(t, d) ≈ dpx(a∗)

da∗
∆da

∗(t, d), (15)

p∗x(t+ 1, d)− p∗x(t, d) ≡ ∆tp
∗
x(t, d) ≈ dpx(a∗)

da∗
∆ta

∗(t, d), (16)

where ∆d and ∆t denote the partial difference with respect to d and t (the approximation is due to

the discreteness of t and d). Notice that equations (15) and (16) differ only in the terms ∆d and ∆t.

Since by Propositions 1 and 2 these are monotonic, non-monotonicities of the probability function

are driven uniquely by the non-monotonicity of dpx(a∗)
da∗ . The sign of the latter can be determined

as:
?︷ ︸︸ ︷

dpx(a∗)

da∗
=

+︷ ︸︸ ︷
∂apx(a∗, β(a∗)) +

+︷ ︸︸ ︷
∂bpx(a∗, β(a∗))

−︷ ︸︸ ︷
β′(a∗) . (17)

The sign of the left hand side is determined by the relative magnitude of the ratio of the two partials

∂apx(a∗, β(a∗)) and ∂bpx(a∗, β(a∗)) (positive by Assumption 1) and the absolute value of the term

β′(a∗) (negative by Lemma 1.1). By equation (17) it follows that the equilibrium probability of a

successful action is such that:

dpx(a∗)

da∗
≥ 0 if and only if

∂apx(a∗, β(a∗))

∂bpx(a∗, β(a∗))
≥ −β′(a∗). (18)

The following result is an immediate corollary of Proposition 1 and 2 along with equations (15), (16)

and (18). Denoting by p̃(t, d) the equilibrium probability in unknown duration games, it follows

that:

Proposition 3. 1. In known duration games, p∗x(t, d) is stationary in t and d if and only if the

equality in equation (18) is satisfied for all possible a∗.

2. In unknown duration games, p̃x(t, d) is t and πt-independent. Specifically: a. for d = 0, p̃x(t, 0)

is equal to the known duration game equilibrium probability at T − 1 , i.e., p̃x(t, 0) = p∗x(T − 1, 0);

b. for d > 0, p̃x(t, d) is given by p̃x(t, d) = p∗x(T − 1, 1) and for d < 0 by p̃x(t, 0) = p∗x(T − 1,−1).

Part 1 of the proposition has important implications. Namely, since a turning point in the prob-

ability of a successful action is determined by the common term dpx(a∗)
da∗ , then the probability of

scoring has a turning point in t if and only if has a turning point in d. Part 2 of the proposition

states that, in unknown duration games, the probability of a successful action is stationary over

time and for d = 0. Specifically it is equal to the probability of a successful action one period before
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the end of a known duration game if d = 0 and given by the corner solution in the other cases,

where the leading player takes the most defensive action and the losing player the most offensive

one. Notice that in the latter case, the probability does not depend on how far ahead or behind a

player is such that the probability of a successful action is the same if, for example, the player is 1

successful action or 2 successful actions ahead (behind). This result will be helpful in the empirical

validation of the model where we draw indirect inferences regarding the probability of a successful

action in unknown duration games when information is available only across d and not over t.

In order to gain a better understanding of how changes in the state (t, d) translate into changes in

the probability of a successful action via changes in players’ actions, one needs more information,

or impose further restrictions, on the actual form of the probability function itself. To this end, in

the next section we study a a fairly unrestrictive, yet conveniently simple, class of functions that

will help in computing the projection of p∗(t, d) on d and t and hence identify how the probability

of observing a successful action might evolve across differences in success and over time.

3. An example

Let us consider the exponentially wrapped log-convex functions:

p1(a, b) = exp(Caa− f(a) + f(b)), (19)

p−1(a, b) = exp(Cbb− f(b) + f(a)), (20)

where Ca and Cb ∈ R+, 0 ≤ f ′ ≤ min{Ca, Cb} with f ′′ > (max(Ca, Cb)− f ′)2, satisfying Assump-

tion 1. All parameters are such that p1(a, b) + p−1(a, b) < 1 for any (a, b).24 The given functional

form allows for the following explicit derivation of β(a∗):25

β(a∗) = [f ′]−1
[
Cb
Ca

[Ca − f ′(a∗)]
]
. (21)

Two facts play a role in the next sections. First, the function β(a∗) is a function of f ′ and hence

β′(a∗) is a function of f
′′
. It follows that changes in the slope of p1(a

∗) are determined by changes

24Alternatively, we could pre-multiply the two functions by a constant small enough to satisfy the inequality. Also
note that under this specification if Ca = Cb then the teams are symmetric, i.e., for any any action pair (a, b),
p1(a, b) = p−1(b, a) if and only if Ca = Cb. We consider the latter a degenerate case in our setting. This differs from
the analysis in the literature which analyzes similar games, e.g., Palomino, Rigotti and Rustichini (1998)

25For the derivation of β(a∗) see Lemma A1 in Appendix.
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in f
′′

and hence by the third derivative of f . Second, using (21), it is easy to see that the ratio of

∂ap1(a
∗, β(a∗)) and ∂bp1(a

∗, β(a∗)) is Ca/Cb. Thus, changes in dp1(a
∗) are determined by whether

−β′(a∗) lies above or below Ca/Cb. We can now turn to the characterization of the trajectory of

p∗1(t, d), first across d and then over t.26

3.1 The probability of a successful action across d

The following results characterize the trajectory of ∆dp
∗
1(t, d) for the given functional form.

Proposition 4. Irrespective of the rules governing the endgame, if f ′′′ > 0 (f ′′′ < 0) then

p1(a
∗(·, d)) is inverted-U shaped (U shaped) across d.

Figure 2 describes the trajectory of the probability of a successful action by player A as a function

of his optimal action, given the time of play. The arrows identify the direction of the trajectory as d

increases. Let ap denote the value where (18) holds with equality and let dp be its projection on d so

that ap is identified by a∗(·, dp) in the figure. That is at ap a change in a∗(·, d) is exactly compensated

by an opposite change in β(ap) with reaction given by β′(ap) = −∂ap1
∂bp1

(for the functional form given

in equations (19) and (20) this is equal to −Ca
Cb

). If d increases from dp to dp + 1 (since the arrows

in the figure point to the left, this corresponds to moving leftward of ap), by Proposition 1.1

player A’s action decreases by an amount, say δ, to ap − δ = a∗(·, dp + 1) < a∗(·, dp) = ap and

player B’s optimal action moves to β(a∗(·, dp + 1)) > β(a∗(·, dp)). If −β′(ap) < −β′(ap − δ) then

p∗1(·, dp + 1) < p∗1(·, dp) and hence p∗1(·, d) is decreasing (Figure 2(a)).27 The trajectory is increasing

otherwise (Figure 2(b)). Since β′(ap) − β′(ap − δ) ≈ δβ′′(ap), then −β′(ap) < −β′(ap − δ) if and

only if β′′(ap) > 0 (holding for f ′′′ < 0). The same argument applies for decreases in d (moving

rightward to ap). Since ap for the given functional form is unique (Lemma A2), the behavior of

p1(a
∗(·, d)) is monotonic thereafter.

3.2 The probability of a successful action over t

As discussed above, in known duration games, the probability of a successful action is non-

stationary. In this section, we show that for the functional forms in (19) and (20) the dynamics of

26An implication of equation (18) and Lemma 2 is that
dp−1(a

∗)
da∗ ≥ 0 if and only dp1(a

∗)
da∗ ≥ 0. Hence, p∗1(t, d) and

p∗−1(t, d) have the same behavior across d and over t and we can therefore concentrate on characterizing the behavior
of p∗1(t, d) only.

27See Lemma A2.
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a∗(·, d)

p1(a
∗(·, d))

a∗(·, dp)
(a) f ′′′ > 0

a∗(·, d)

p1(a
∗(·, d))

a∗(·, dp)
(b) f ′′′ < 0

Figure 2: Trajectory of the probability of successful action for increasing d, given t

the probability of a successful action depends on the relative position of the two following values

along with the shape of the function f . The first value is the turning point a∗(tp, ·), given by the

projection of ap the value where (18) holds with equality on t, where the function p1(a
∗(t, ·)) is

locally concave (convex) if f ′′′ > 0 (f ′′′ < 0). The second value, denoted by a+, determines the

position of the sets over which player A has a relative advantage in attacking and defending. For

the given functional form this is given by a+ = [f ′]−1 (Ca/2).28 The point a+ partitions player A’s

action space into two connected and (t, d)-independent subsets that can now be written as A∗+ and

A∗−. The action value a∗(t, d) ∈ A∗+ if and only if a∗(t, d) < a+. Moreover the following proposition

states that the relative position of a∗(tp, ·) with respect to a+ depends on the relative magnitude

of Ca and Cb.

Proposition 5. Suppose the duration of the game is known. 1. Let f ′′′ > 0. Then, given d,

p1(a
∗(t, ·)) is inverted-U shaped over t on A∗+ if and only if Cb > Ca or on A∗− if and only if

Cb < Ca. p1(a
∗(t, ·)) is monotonically decreasing in the complementary sets.

2. Let f ′′′ < 0. Then, given d, p1(a
∗(t, ·)) is U-shaped over t on A∗+ if and only if Cb > Ca or on

A∗− if and only if Cb < Ca. p1(a
∗(t, ·)) is monotonically increasing in the complementary sets.29

Figure 3 shows the four qualitatively, non-degenerate30 configurations of p1(a
∗(t, d)) that can occur

according to Proposition 5. Graphs (a) and (b) present the cases for f ′′′ > 0 and f ′′′ < 0, respec-

tively. The light/green and dark/blue arrows trace the dynamics corresponding to Cb > Ca and

28See Lemma A3 in the appendix.
29Since p−1(a, b) = p1(b, a), it is possible to compute p−1(a∗(t, ·)) in a similar way.
30The degenerate configurations are for f ′′′ = 0 and Ca = Cb. The graphs are available from the authors.
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Cb < Ca, respectively. The shaded area represents the set A+. The arrows to the left (right) of a+

show the dynamics over time when the player has a relative advantage in attacking (defending).

a∗(t, ·)

p1(a∗(t, ·))

A+

t→← t

a+

Ca < Cb

Ca > Cb

a∗(tp, ·) a∗(tp, ·)

(a) f ′′′ > 0

a∗(t, ·)

p1(a∗(t, ·))

A+

t→← t

a+a∗(tp, ·)

Ca < Cb

a∗(tp, ·)

Ca > Cb

(b) f ′′′ < 0

Figure 3: Dynamics of the equilibrium probability given d.

Consider, for example, the light/green path in plot (a). This represents the case where f ′′′ > 0

and Ca < Cb. Since f ′′′ > 0, p1(a
∗(t, d)) is inverted-U shaped with a turning point at a∗(tp, ·).

Ca < Cb then implies that ap < a+, i.e., ap belongs to the set of equilibrium actions where the

player has a relative advantage in attacking. The mechanism explaining the inverted-U shape of

the dynamics over t is the same as for the trajectory over d represented in Figure 2. In this case

player A’s optimal equilibrium action decreases over t if a∗(t, ·) ∈ [0; a+]. For a∗(t, d) > a+, the

optimal action increases overtime and the equilibrium probability p1(a
∗(t, d)) decreases with the

action resulting in a decreasing probability of successful action. Notice that since the optimal action

moves always away from a+ (i.e., a+ is a repeller), given d, the optimal action will never cross a+

overtime and players will not switch relative advantage (unless there is a change in d). If, however,

the difference in successful actions increases, a∗(t, d) moves faster away from a+ if a∗(t, d) ∈ A∗+ and

it is pushed back towards a+ if a∗(t, d) ∈ A∗−. If the increase in d is sufficiently high then a∗(t, d)

crosses a+ into A∗+. So, for the case plotted in the green/light path of (a), changes in relative

advantage for player A can occur only from defence to attack for sufficiently high increases in d and

from attack to defence for sufficiently high decreases in d. The same logic applies to other paths.

Going back to the Afghanistan war context, one can think of casualties as successful actions. Figure
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Figure 4: Casualties

4 shows that the trajectory of the allied casualties is non-monotonic. Specifically, the trajectory

follows an inverted-U shape overtime. In the next section we compute the equilibrium probability

of a successful action for soccer matches and show that, in this case as well, the data are consistent

with the inverted-U shaped plots (a) in Figure 3.

4. The endgame in soccer

The Afghanistan war is an interesting example as for the first time one of the belligerent parties

publicly announced the duration of the conflict. Unfortunately, although data collections on armed

conflicts have substantially improved in the last decades there are still substantial difficulties due to

incompleteness and errors.31 Economic or political competitions present other types of difficulties

like complex environments that cannot always be framed in terms of simple models.

This is not the case for sport competitions. There are several well known advantages of using

data on sport matches, not only because they are simpler to model than armed conflicts but also

because there is a wealth of recorded, relatively reliable data which has shown to be of relevance

to strategic analysis well beyond the entertainment industry per se.32 Indeed, for the purpose of

this study, sport matches exhibit striking similarities in behavior to armed conflicts like the one

in Afghanistan. Among sport matches, we use data from the soccer game. There are two main

reasons for this choice. First, soccer is a strategic conflict with a setup similar to our theoretical

model. Second and most importantly, a change in the rule governing the added time of the game

which requires referees to publicly announce the duration of the added time occurred in 1998. This

31For the Afghanistan case, see Cordesman (2012).
32See, e.g., Palacios-Huerta (2013) on game theoretic analyses of soccer.
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rule change has turned the added time from being of unknown duration to a known duration and

thus presents a unique opportunity to test our model.

Unlike other sports, in soccer the game clock is always running and the referee does not pause it

for fouls, injuries, penalty kicks, etc. In order to decrease the incentive the leading team might

have to waste time so as to stay in the lead, FIFA instructs its referees to add at the end of each

half the estimated amount of time lost. The duration of the added or stoppage time is at the sole

discretion of the referee, and he/she alone decides when the match is officially over.

Following the characterization of the theoretical part, we can identify two subgames in a soccer

match. The first is the regular time (RT), i.e., a known duration game of 90 minutes. The second

is the added time (AT) and this can be identified as either of known duration or unknown duration,

depending on whether the referee is required to make its length known to the players at the end of

the RT subgame.

Originally the duration of the AT was not made public and referees would only blow the whistle to

announce the end of the game. This changed in September 1998 when the International Football

Association Board (IFAB) required FIFA referees to publicly announce at the end of minute 89

of play the time he/she intends the add to the RT game.33 Specifically, starting with the 1998-99

season, the referee must communicate the duration of the AT to the fourth official who in turn

makes it common knowledge to players and spectators alike by holding up a board reporting the

number of minutes to be added to the game.34 The intention of the change of rule was to make

the game more exciting as well as to let players and spectators know that all of the time spent on

injuries and other lost time are indeed added back to the game. For the purpose of our analysis,

however, the most important effect of the new rule has been to turn the AT from a game of unknown

duration, pre-1998 seasons, to one of known duration, post-1998 seasons.

Our theoretical model fits nicely with the settings of the soccer game.35 Specifically, the RT

represents a game of known duration; though the value of the game at the last minutes of play might

differ depending on the rule governing the AT. To see this it suffices to interpret the continuation

value at minute 89 as the expected length of the added time, either announced or not announced.

33See Rule 7 in the FIFA’s “Laws of The Game,” http://www.fifa.com. Our analysis will abstract from the time
added to the first 45 minutes.

34Starting with the 2011 season the fourth official must keep a written record of the game’s interruptions (see
http://www.bbc.co.uk/sport/0/football/20159223).

35Both armed conflicts and the way to account for wins and losses in soccer are not ”pure” zero-sum games.
Nevertheless, the data are consistent with our model’s predictions.
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Our analysis below first examines the RT game. While the RT game is always of known duration,

analyzing the RT game serves two objectives. First, it provides a validation of the results of the

theoretical model for known duration games. The minute-by-minute data on goals scored allows

us to directly estimate the dynamics of the probability of scoring during the RT. Second, both

the dynamics and the trajectory across goal differences of the probability of scoring during the

RT provide relevant information for comparing the AT games pre- and post-1998, which is the

main goal of the empirical analysis. In fact, the analysis of the AT is not straightforward. Unlike

the case for the RT, the available record of data on goals scored during the AT consists only of

the aggregate scoring, i.e., the total number of goals scored by each team during the entire AT.

Although this makes running a direct comparison of the dynamics of the probability of scoring pre-

and post-1998 not possible, the aggregate data are still valuable for an indirect inference especially

when interpreted together with the behavior of the probability of scoring during the RT.

Our data set is composed of primary-league matches starting with the 1995-1996 season and ending

with the 2003-2004 season for England, Germany, Ireland, Italy, Scotland and Spain. For each

match, we recorded the total number of goals scored and how far into the game each goal was

scored. The data for the analysis were compiled from individual game’s box scores, largely obtained

from Soccerbot.com, an online site reporting results and standings for soccer leagues around the

world. In the top division, the English, Italian, German and Spanish leagues have, on average, 20

teams while the Scottish league has an average of 10 teams. In all the leagues studied, each team

plays on average 38 games per season, resulting in about 1,500 observations per season.

Table B1 in Appendix B summarizes the number of matches observed, the average total number of

goals scored during a game, and the average number of goals scored during AT over the 1995-2003

period.36

36Discussions with sports commentators suggest that during the period we study, it was possible to have some
reporting differences where goals scored during AT would later be recorded as scored at minute 89, if the goal was
not scored in the last minute of AT. That is, if the game lasted 90 + z minutes, then all goals scored between the
minute 90 and minute 90 + (z − 1) were recorded as having been scored during minute 89. Thus for the empirical
analysis, we take the first 88 minutes of each game as RT and the game from minute 90 onward as AT.
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4.1 The regular time subgame: a known duration game

As a first representation of our dataset on RT scoring, Figure 5(a) presents the probability of

scoring a goal across d. This is computed as:

p̂1(t, d) =
# (goals scored by team A at time t when leading by d)

#matches
,

where t = 20, 45, 70 and 88 is the number of minutes into the game and d is the goal difference

by which the team scoring the goal leads or lags. The probability distributions have an inverted-U

shape with a turning point dp around d = 0. Figure 5(b) plots the estimated marginal probability

of scoring across d by averaging p̂1(t, d) over time for the RT game. Notice that since p̂1(t, d) is

inverted-U shaped with dp(t) = 0 so is the marginal probability. This can also be observed by

summing over t on both sides of equation (15).

(a) p̂1(t, d) at t=20, 45, 70, 88 (b) 1
88

Σtp̂1(t, d)

Figure 5: Estimated probability of scoring across d for given t, graph (a) and averaging for all t, graph (b)

In order to study the shape of the unconditional probability of scoring with respect to both t and d,

we fit the following model of the odds of scoring a goal as a function of time and the goal difference:

log(p̂1(t, d)/(1− p̂1(t, d)) = β0 + δ1d+ δ2d
2 + β1t+ β2t

2 + ε, (22)

where t = 1, ..., 88, is the number of minutes into the game and d is the goal difference.

Our first hypothesis tests for the shape of the model in equation (22).
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Specification I Specification II Specification III

coeff z-stat coeff z-stat coeff z-stat

d 0.0542 2.46 0.0083 0.13
d2 -0.5192 -27.97 -0.5206 -27.91
d3 0.0137 0.77
t 0.0530 9.91 0.0648 4.57 0.0100 5.42
t2 -0.0004 -6.62 -0.0007 -1.95 -8E-05 -3.97
t3 2.3E-06 0.90

const -6.7623 -61.37 -6.8634 -43.45 -4.5365 -127.18

R2 0.6995 0.7005 0.3997
F 241.52∗∗∗ 161.01∗∗∗ 28.29∗∗∗

Turning point 71 63

Table 1: Estimation results of the probability ratio for the regular time

Hypothesis 1. δi = 0, i = 1, 2 and βi = 0, i = 1, 2.

An important implication of Proposition 3 together with equation (15) is that the probability of

scoring during RT is non-stationary. In this case, a turning point of p̂1(t, d) in t implies a turning

point in d (and viceversa). Since the odds ratio is a monotonic transformation this should hold for

model (22) as well. Rejecting Hypothesis 1 implies that model (22) displays the same behaviour

across d and over t. The regression will also allow us to identify the shape of the probability

function, a relevant information for the analysis in the next section. In general one can identify

three possible paths in the empirical model in (22) over time and goal differences. When β1 > 0

and β2 < 0 we have an inverted-U shaped curve in t while δ1 > 0 and δ2 < 0 imply an inverted-U

shaped curve in d. Similarly β1 < 0 and β2 > 0 imply a U shaped curve in t while δ1 < 0 and δ2 > 0

a U shaped curve in d. In the cases where these coefficients have opposite sign, there exists a unique

turning point in t (resp. d) at tp = − β1
2β2

(resp. dp = − δ1
2δ2

). Finally if both β’s coefficients (resp.

δ’s) have the same sign, the function is monotonic in t (resp. d), either increasing or decreasing.

The behavior of p̂1(t, d) over t and across d must be the same, non-monotonic behavior if we fail

to reject the following hypothesis:

Hypothesis 2. Either: β1 > 0, δ1 > 0 and β2 < 0, δ2 < 0,

or: β1 < 0, δ1 < 0 and β2 > 0, δ2 > 0.

Table 1 presents the estimation results for the RT game. Specification I summarizes the estimation

of model (22). Specification II overfits the model with cubic terms to check for parsimony and
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whether there is more than one turning point. Specification III estimates the marginal probability

over t without controlling for d (analogous to Figure 5(b)).

The results in Specification I show that we reject Hypothesis 1. We also find the coefficients on t

and d are both positive and significant while the coefficients on t2 and d2 are both negative and

significant, which confirms that the probability of scoring has an inverted-U shape in t and d.

Hence, we fail to reject Hypothesis 2. The turning points occur at tp = 71 and dp = 0.52. Figure 6

(a) plots the response surface for visual confirmation.

Specification II rejects a cubic relationship hence validating Specification I. Though the purpose of

the analysis is not to test whether the probability function fits with the probability family presented

in (19) and (20) in the example, the results imply that we cannot reject this hypothesis.

Finally, Specification III shows that the inverted-U relationship remains even when we do not

control for goal differences. The comparative response curve is plotted in Figure 6(b).

(a) Specification I (b) Specification III

Figure 6: The dynamics of the probability of scoring during RT

4.2 The added time subgame: a natural experiment

The 1998 rule change governing the AT represents an opportunity to run a natural experiment to

test our model. As already pointed out, a direct comparison of the dynamics of the probability of

scoring before and after the rule change is not possible due to the lack of minute-by-minute data

but an indirect inference is possible by using the analysis on the RT games in conjunction with the
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behavior of the probability of scoring across d during the AT games.

Two notes are in order. First, since the teams playing in the RT and in the AT games are the

same, we assume that the function characterizing the probability of scoring in the RT and in the AT

games is the same. Second, in the lack of contrary evidence, we assume the same average length of

the AT before and after 1998 and hence that there is no significant marginal change in the scoring

probability due to any extra time.37

We first test that in the post-1998 games the average number of goals scored during AT, conditional

on the goal difference at the beginning of AT, have the same inverted-U trajectory in d as in the RT

game. Having disaggregated data on d but not over t, the behavior across d is useful for inferring

the behavior over t. This follows from the implication of Proposition 3.1, i.e., if the probability of

scoring in known-duration games has a turning point in d then it has a turning point in t. To this

end we estimate the following logit model of the probability of scoring a goal during AT post-1998,

conditional on d:

yi = f
(
γ0 + γ1di + γ2d

2
i

)
+ εi, (23)

where yi equals 1 if a goal was scored in the ith game and zero otherwise,38 and f denotes the logit

link function. Since the data is aggregated over time, the model is t-independent.

In order for the data to be consistent with Proposition 3.1 the coefficients γ1 and γ2 in the logit

model (23) applied to post-1998 AT games must have the same sign as the coefficients δ1 and δ2 in

model (22), respectively. The following hypothesis formalizes this observation:

Hypothesis 3. γ1 > 0 and γ2 < 0.

The results for post-1998 AT games reported in Table 2 show that the coefficients on γ1 and γ2

are positive and negative, respectively. This implies that model (23) for the post-1998 AT games is

an inverted-U shaped curve in d as in the case of the probability function across d during the RT

game. The statistical insignificance of the cubic term of d further validates our hypothesis. Table

2 also reports the results for pre-1998 games.

We can now look at the implications of the change in rule on the probability of scoring over time.

Lacking minute-by-minute data, the argument we use for the indirect inference makes use of the

37This has been confirmed in discussions with sports commentators.
38We exclude games with multiple goals during AT, so that the conditionality on d does not change.
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Pre-1998 Post-1998

coeff Z-stat coeff z-stat coeff z-stat coeff z-stat

d 0.1427 4.50 0.1589 3.61 0.0824 4.77 0.1184 4.78

d2 -0.0184 -1.66 -0.0162 -1.39 -0.0155 -2.42 -0.0142 -2.25

d3 -0.0017 -0.54 -0.0037 -2.06

cons -2.9103 -50.28 -2.9166 -49.39 -2.6480 -81.81 -2.6506 -81.83

LL -1697.26 -1697.12 -5208.84 -5206.85

χ2 22.95 31.56 27.59 23.23

Table 2: The probability of scoring a goal with respect d during AT

behaviour of the probability of scoring in the RT games across d and t and in the AT across d.

Specifically, notice that the continuation value of the RT game at the last minute of play is given

by the expected value of the AT game. Furthermore, recall that according to Proposition 3.2, the

probability of scoring a goal in an unknown duration game at d ≤ −1, d = 0 and d ≥ 1 equals the

probability of scoring at the last minute of the known duration game at d = 1, d = 0 and d = 1,

respectively. Taken together, this suggests that for the pre-1998 seasons, since the AT game is an

unknown duration game, the dynamics of probability of scoring during AT is time invariant and

should equal the “end point” of the probability of scoring during AT in the post-1998 games. For

the post-1998 seasons, the expected value is taken over all possible AT lengths the referee may

announce at the end of the RT game.39 Being a continuation of the RT game, it follows that the

probability of scoring during AT in the post-1998 games is a downward sloping curve. This together

with the fact that at the end of the AT the probability of scoring during AT pre-1998 and post-98

must be the same implies that, for any given d, the probability of scoring during AT post-1998

is always above the corresponding probability in the pre-1998 games. Consequently, the average

number of goals scored during AT post-1998 should be greater than this average pre-1998. Figure

7 illustrates the argument.

The area between the curves in the figure represents the increase in the probability of scoring during

AT due to the change of rule. To this end we estimate the following model:

yi = f
(
γ̃0 + γ̃0,dD98i + γ̃1di + γ̃2d

2
i

)
+ εi. (24)

The dummy variable D98 equals 1 if the game is played after the rule change and 0 otherwise; d

39While this expectation might over or under-estimating the actual time added, it is reasonable to assume that on
average players correctly anticipate the referee’s announcement.
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t

p∗1(t, ·)

RT AT

Figure 7: Probability of successful action

Specification I

coeff z-stat
d 0.0969 6.40
d2 -0.0159 -2.87

D98 0.2559 4.52
cons -2.9039 -56.10

LL -6907.55
χ2 69.16

Table 3: Logit estimation

is the goal difference at the beginning of the AT game. The coefficient γ̃0,d measures the average

goal difference pre and post-1998 and hence the highlighted area in Figure 7. We can state our

hypothesis as follows:

Hypothesis 4. The coefficient γ̃0,d > 0.

Specification I in Table 3 summarizes the results of equation (24). The z-stat value confirms that

the coefficient on γ̃0,d is positively significant. Thus we accept Hypothesis 4.

Most interestingly, the results show that the change of policy on the disclosure of the duration of

the added time game has led to a 28% increase in the probability of scoring from 0.101 to 0.128

(see Table B1), implying more than one extra goal every 4 games.

Our final test analyzes the prediction of Proposition 3.2 on the dynamics of the probability of a

successful action in unknown duration games, namely that the probabilities of scoring are constant

across d < 0 and across d > 0. Due to the small number of observations, we cannot test this

predictions for observations where d < −2 and d > 2. Therefore we test whether the probability

of scoring at d = −2 (d = 2) equals the probability of scoring at d = −1 (d = 1). The following

hypothesis formalizes the test:

Hypothesis 5. p̃(−2) = p̃(−1) and p̃(1) = p̃(2).

Estimating the conditional probabilities for p̃(−2) and p̃(−1) we obtain 0.051 and 0.040, respectively

with a z-stat of -1.24. Similarly, for the conditional probabilities for p̃(1) and p̃(2) we obtain 0.072

and 0.071, respectively with a z-stat of 0.14. We conclude the analysis by accepting Hypothesis 5.
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5. Concluding remarks

The 2008 U.S. presidential campaign, where the setting of a withdrawal date from Afghanistan was

central to the debate, provides evidence of policymakers’ awareness of the potential implications

of disclosing the duration of a conflict, both as a response to public opinion pressure and as a

strategic commitment. A better understanding of these issues would also help in the management

of international peace-keeping missions, especially when considering the optimal allocation of troops

across multiple fronts.

Further work is necessary for a full assessment of how the two games analyzed in this paper differ.

Among them, notice that Table B1 reports the statistics for the average total number of goals

throughout the game across the different seasons. It is interesting to notice that the communication

of time left till the end of the game has not affected the average total number of goals scored in a

match. Rather, it has significantly reallocated goals from the RT subgame toward the AT subgame.

We did not try to address the reason for the scoring reallocation as this will be the objective of

future work. However, the fact that the total number of goals did not increase over time has

very important implications as it suggests that the increase in goals scored during AT cannot be

simply attributed to an increase in the average duration of the AT (of which, moreover, there is no

evidence) as this would have affected the total number of goals scored in a game.

As a final note, in our theoretical model and in the empirical application, neither the game’s

duration nor the communication of the duration is part of the players’ strategies, as both are taken

to be exogenous. An interesting extension of the model would consider the case where agents can

unilaterally fix the duration and then decide whether to release this information or keep it private.

Notice that having abstracted away from this case does not detract from the interest of the analysis

as in many situations the duration of the game is not part of the players actions’ set. For example, in

the case of armed conflicts or peace missions, budgetary and political considerations often determine

the length of the involvement, which is only then communicated to the actors on the field. In case

of the UN peace missions the “The Fifth Committee (Administrative and Budgetary) sets the

Peacekeeping Budget each year from July to June. However, the committee reviews and adjusts

the budget throughout the year. Since peace missions vary in number and duration, contributions

to the Peacekeeping Budget fluctuate widely from year to year” (Global Policy Forum (2014)).
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Appendix A

Proof of Lemma 1: Consider the following function of (a, b) ∈ A×B :

U(a, b; V) =
1∑

x=−1
px(a, b)Vx, (A1)

where V = (Vx : x = −1, 0, 1) and V1 ≥ V0 ≥ V−1 represents a vector of parameters and the

probability function px(·, ·), x = −1, 0, 1 satisfies Assumption 1. Let:

a∗ = arg max
a

U(a, b∗; V), (A2)

b∗ = arg min
b
U(a∗, b; V). (A3)

We will later interpret a∗ and b∗ as a∗(t, d) and b∗(t, d), respectively. Consider the following three

cases that we will subsequently relate to Part 1-3 in the lemma.

Case A1 : V1 > V0 > V−1. A necessary condition for an interior equilibrium is that for any given
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b ∈ (0, 1): ∂aU(a, b; V) = 0. For all V by Assumption 1.2 it follows that:

∂aU(0, b; V) = ∂ap1(0, b)(V1 − V0)− ∂ap−1(0, b)(V0 − V−1) = ∂ap1(0, b)(V1 − V0);

∂aU(1, b; V) = ∂ap1(1, b)(V1 − V0)− ∂ap−1(1, b)(V0 − V−1) = −∂ap−1(1, b)(V0 − V−1).

By Assumption 1.3, ∂2ap1(a, b) < 0 and hence ∂ap1(0, b) > ∂ap1(1, b) = 0. Also, since by the

same assumption ∂2ap−1 > 0 we have ∂ap−1(1, b) > ∂ap−1(0, b) = 0. Thus ∂aU(0, b; V) > 0 and

∂aU(1, b; V) < 0. By the intermediate value theorem given b ∈ (a, b) there exists a value a∗(b) ∈

(a, b) such that ∂U(a∗(b), b; V) = 0. A similar argument proves that given a ∈ (a, b) there exists a

value b∗(a) ∈ (a, b) such that ∂U(a, b∗(a); V) = 0.

In order to show uniqueness, notice that by implicit function theorem, the slope of the reaction

function is given by:

da∗(b)

db
= −∂

2U(a, b; V)

∂a∂b

(
∂2U(a, b; V)

∂a2

)−1
.

Similarly, again by the implicit function theorem on the first order condition of the dual problem

minb U(a, b; V) for any given a obtain:

db∗(a)

da
= −∂

2U(a, b; V)

∂a∂b

(
∂2U(a, b; V)

∂b2

)−1
.

Notice that by assumption ∂2U(a,b;V)
∂a2

< 0 and ∂2U(a,b;V)
∂b2

> 0. Having the numerators the same

signs, the slopes of the reaction functions da∗(b)
db and db∗(a)

da have opposite signs. Thus the value at

which the reaction functions cross is unique. This also shows that there exits a function β : A→ B

such that β(a∗) = b∗ and β
′
< 0.

Case A2: This comprises two sub-cases. The first where V1 = V0 > V−1. The problem becomes:

U(a, b; V) = (1− p−1(a, b))V0 + p−1(a, b)V−1,

= V0 − p−1(a, b) (V0 − V−1) . (A4)

Thus for any given b∗, maximising U(a, b∗; V) with respect to a, implies choosing the minimum

value of a∗ = 0. Similarly, for any given a∗ minimising U(a∗, b; V) with respect to b, implies

choosing the maximum value of b∗ = 1. Then (a∗, b∗) = (0, 1).

The second sub-case occurs for V1 > V0 = V−1. A similar argument obtains (a∗, b∗) = (1, 0).
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Case A3: V1 = V0 = V−1. This implies U(a, b; V) = V0 and then any (a∗, b∗) is a solution.

In order to conclude the proof it suffices to reinterpret a∗ and b∗ as the solutions a∗(t, d) and b∗(t, d)

to the problems in (8) and (9), respectively, where V (t+ 1, d+ 1) is equivalent to Vx in the static

problem.

Finally, the cases d < |T − t + 1| − 1, d = |T − t + 1| − 1 and d ≥ |T − t + 1| correspond to Case

A1, A2 and A3 above and to point 1, 2 and 3 in the lemma.

Proof of Lemma 2: From the first order condition of (8) computing the derivatives at a∗ = a∗(t, d)

and b∗ = b∗(t, d), recalling that the game is zero-sum and using p0 = 1− p1 − p−1 obtain:

∂ap1(a
∗, b∗)[V (t+ 1, d+ 1)− V (t+ 1, d)] = ∂ap−1(a

∗, b∗)[V (t+ 1, d)− V (t+ 1, d− 1)], (A5)

Rearranging (A5) and multiplying both sides by
p∗−1(t,d)

p∗1(t,d)
obtain (11). εB

∗
(t, d) can be obtained by

rearranging the first order condition of (9) in a similar way.

Proof of Lemma 3. Part 1. From the first order condition of (8) evaluated at equilibrium we

obtain:

V (t+ 1, d)− V (t+ 1, d− 1) =
∂ap
∗
1(t, d)

∂ap∗−1(t, d)
[V (t+ 1, d+ 1)− V (t+ 1, d)]. (A6)

where ∂ap
∗
x(t, d) > 0 by Assumption 1.1. From Equation (A6) it follows that V (t+1, d+1)−V (t+

1, d) and V (t+ 1, d)−V (t+ 1, d− 1) must have the same sign and hence that V (·, d) is a monotone

function in d. Since at the absorbing states V (·,−d̄(·)) = −1 and V (·, d̄(·)) = 1, it follows that

V (·, d) must be increasing in d.

Part 2. See the main text.

Proof of Proposition 1: Consider the function in (A1) and let U (a∗, b∗; V) = maxa U (a, b∗; V) .

By the envelope theorem it follows that:

dU (a∗, b∗; V) =
1∑

x=−1
px (a∗, b∗) ∂Vx.

Holding the value of U(a∗, b∗; V) constant (i.e., dU(a∗, b∗; V) = 0) and holding ∂V−1 = 0, obtain:

∂V1
∂V0

= −p0(a∗,b∗)
p1(a∗,b∗)

. Similarly holding ∂V1 = 0, obtain: ∂V−1

∂V0
= − p0(a∗,b∗)

p−1(a∗,b∗)
. Using the implicit function

theorem on the first order condition:
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da∗

dV0
= −∂

2U (a, b∗; V)

∂a∂V0

(
∂2U (a, b∗; V)

∂a2

)−1
.

By Assumption 1.3 the function U is concave and hence ∂2U(a∗(V),b∗(V))
∂a2

< 0. Moreover:

∂2U (a, b∗; V)

∂a∂V0
= ∂ap

∗
1

∂V1
∂V0

+ ∂ap
∗
−1
∂V−1
∂V0

+ ∂ap
∗
0

∂V0
∂V0

= −∂ap∗1
p∗0
p∗1
− ∂ap∗−1

p∗0
p∗−1
− ∂ap∗1 − ∂ap∗−1 < 0,

where the inequality follows by Assumption 1.1. This shows that da∗(V)
dV0

< 0. A similar argument

shows that db∗(V)
dV0

> 0.

The above static formulation of the problem is convenient as now we can prove the two parts of

the proposition by appropriately reinterpreting the values Vx.

Part 1. Recall that by Lemma 3.1, the value of the game is increasing in the differences of successful

actions. Consider now two different values for V0 in problem (A1), namely V
′
0 = V (t, d) and

V
′′
0 = V (t, d+ 1) > V (t, d) = V

′
0 . It follows that the solution a∗ (t, d) to (A1) when V0 = V

′
0 and

the solution a∗ (t, d+ 1) when V0 = V
′′
0 are such that a∗ (t, d+ 1) < a∗ (t, d).

Part 2. Recall that by Lemma 3.2, if a∗ ∈ A+(t, d) then V (t+ 1, d) > V (t, d) . Suppose player

A has advantage in attacking and consider two different values for V0 in problem (A1), namely

V
′
0 = V (t, d) and V

′′
0 = V (t+ 1, d) > V (t, d) = V

′
0 . It follows that the solution a∗ (t, d) to (A1)

when V0 = V
′
0 and the solution a∗ (t, d) when V0 = V

′′
0 are such that a∗ (t+ 1, d) < a∗ (t, d) .

Being the game zero-sum, the behaviour of player B’s optimal action is symmetric.

Proof of Proposition 2: The proof proceeds in several steps.

Step 1. We start by showing that the solution to problem (13) and (14) is t-independent. Let:

W (d) = π

1∑
x=−1

p̃x(d)W ′(d+ x) + (1− π)V (d) = Φ(W ′)(d),

where Φ is the continuous functional Φ : Υ → Υ with Υ the space of bounded functions endowed

with the uniform norm ‖·‖∞. Consider W and W ′ ∈ Υ, then

∥∥Φ(W )− Φ(W ′)
∥∥
∞ ≤ π

∥∥W −W ′∥∥∞ ≤ π ∥∥W −W ′∥∥∞ .
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Since π < 1, Φ is a contraction mapping with fixed point in Υ, i.e., the solution is t-independent.

Step 2. We now show two facts that will be useful in Step 3 to characterize the solution of the

system. First we prove that for all d’s, |W (d)| < 1; then we prove that W (1) > W (0) > W (−1).

In order to prove that |W (d)| < 1, rewrite (13) at the t-independent solution:

W (d) = π [p̃1 (d)W (d+ 1) + p̃0 (d)W (d) + p̃−1 (d)W (d− 1)] + (1− π)V (d) . (A7)

The sequence of equations represented by (A7) for d = . . . ,−1, 0, 1, . . . can be rewritten as the

linear functional W = πPW + (1− π)V where V is the vector (. . . , V (d− 1), V (d), V (d+ 1), . . . )

and each element (d, d+ x) of P is given by:

Pd,d+x =

 p̃x(d) for x = −1, 0, 1;

0 otherwise.
(A8)

Therefore P is a stochastic matrix with maximum eigenvalue of 1. Being π < 1, (I−πP) is invertible

and hence obtain W =(1− π) (I−πP)−1 V. By Caley-Hamilton theorem we can write

W = (1− π)

∞∑
n=0

πnPnV,

showing that W (d) is a convex combination of values between -1 and 1.

We can now prove that W (1) > W (0) > W (−1). Consider the recursive relation given V(n) =

PV(n−1), n = 1, 2, . . . where P is defined as in (A8). Then W = (1 − π)
∑∞

n=0 π
nV(n), where

V(0) = V. We show by induction that for all n, V (n)(1) > V (n)(0) > V (n)(−1). Suppose this is

true for a given n, then V (n+1)(d) =
∑1

x=−1 p̃x(d)V (n)(d + x) and hence V (n+1)(1) > V (n)(1) >

V (n+1)(0) > V (n)(−1) > V (n+1)(−1). But this must be the case for n = 0 as V (1) > V (0) > V (−1)

hence W (1) > W (0) > W (−1).40

Step 3. We are now in a position to characterize the solution to the system (13) and (14) for |d| ≥ 1.

Consider the problem in (13). Given player B’s action b̃, this can be rewritten as:

W (d)− (1− πt)V (d) = πt max
a
{

1∑
x=−1

px(a, b̃)W (d+ x)}.

40It is easy to extend the proof to show strict monotonicity of W (d) for all d.
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Rearranging terms obtain:

(1− π)(W (d)− V (d)) = πmax
a
{p1(a, b̃)[W (d+ 1)−W (d)]− p−1(a, b̃)[W (d)−W (d− 1)]}.

The right hand side represents the difference between the expected marginal value of scoring a

successful action and the expected marginal cost of conceding one. Notice that W (d) < 1 by Step

2.1 and V (d) = 1 for d ≥ 1 then the marginal gain of a successful action is always less than its

marginal costs. It follows that the equilibrium actions are given by (ã(d), b̃) = (0, 1). The opposite

holds for d ≤ −1 with equilibrium actions (ã(d), b̃(d)) = (1, 0).

Step 4: By following the steps in the proof of Case 1 in Lemma 1, it is possible to show that for

d = 0 the solution must be in the interior and

(ã(0), b̃(0)) = arg max
a

min
b
{p1(a, b)[W (1)−W (0)]− p−1(a, b))[W (0)−W (−1)]} . (A9)

We finally prove that the interior solution for the unknown duration game is the same as in the

known duration one at T − 1. First notice that W (1)−W (0) = W (0)−W (−1). Suppose not and

let [W (1)−W (0)] < [W (0)−W (−1)]. Then (ã(0), b̃(0)) = (0, 1) that is contradiction of the interior

solution. A similar contradiction follows from [W (1) −W (0)] > [W (0) −W (−1)] as in that case

(ã(0), b̃(0)) = (1, 0). Therefore equation (A9) becomes:

(ã(0), b̃(0)) = arg max
a

min
b
{p1(a, b)− p−1(a, b))} . (A10)

Now consider the equilibrium in the fixed duration game at t = T − 1 and d = 0. Replacing the

values for V (1) = 1, V (0) = 0 and V (−1) = −1 obtain:

(a∗(0), b∗(0)) = arg max
a

min
b
{p1(a, b)− p−1(a, b))} ,

the same as in (A10).

Lemma A1. Player B’s equilibrium action is given by β(a∗) = [f ′]−1
[
Cb[1− C−1a f

′
(a∗)]

]
.

Proof of Lemma A1: From the equilibrium condition on the relative elasticities it is easy to

show that εA∗ = [εB∗]−1. For the functional forms specified in (19) and (20) obtain:
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Ca − f
′
(a∗)

f ′(a∗)
=

f
′
(β(a∗))

Cb − f ′(β(a∗))
⇒ f

′
(β(a∗)) =

Cb
Ca

[
Ca − f

′
(a∗))

]
, (A11)

and hence the result.

Lemma A2. There is a unique turning point ap such that p1(a
∗) is locally concave (convex) at ap

if and only if f ′′′ > 0 (f ′′′ < 0).

Proof of Lemma A2: Changes in p1(a
∗, β(a∗)) with respect to action a∗ are obtained by solving:

dp1(a
∗)

da∗
= ∂ap1(a

∗, β(a∗)) + ∂bp1(a
∗, β(a∗))β′ (a∗) , (A12)

where ∂ap1(a, b) = (Ca − f ′(a))p1(a, b) > 0 and ∂bp1(a, b) = f ′(b)p1(a, b) > 0. Imposing the equi-

librium condition in (A11) it is straightforward to show that:

dp1(a
∗)

da∗
=
(
Ca − f

′
(a∗)

)(
1 +

Cb
Ca
β
′
(a∗)

)
p1 (a∗) , (A13)

where p1(a
∗, β(a∗)) = p1 (a∗). Note that there exists a turning point ap of p1(ap) such that dp1(a∗)

da∗ =

0 if and only if β
′
(a∗) = −Ca

Cb
. The first derivative of β(a∗) can also be computed from (A11)

obtaining: β
′
(a∗) = −Cb

Ca

f
′′
(a∗)

f ′′ (β(a∗))
. Equating the two values gives:

[
Cb
Ca

]2 f
′′
(ap)

f ′′(β (ap))
= 1, (A14)

where β(ap) can be obtained by Lemma A1. Since f
′′

is strictly monotonic the turning point ap of

p1(ap) is unique.

Let us now show that the function p1 (a∗) is locally concave at ap. Taking the second derivative of

p1(a
∗, β(a∗)) obtain:

d2p1(a
∗)

d2a∗
≡d

2p1(a
∗, β(a∗))

d2a∗
= d

[(
Ca − f

′
(a∗)

)(
1 +

Cb
Ca
β
′
(a∗)

)
p1 (a∗)

]
= −f ′′ (a∗)

(
1 +

Cb
Ca
β
′
(a∗)

)
p1(a

∗) +
Cb
Ca
β
′′

(a∗)
(
Ca − f

′
(a∗)

)
p1 (a∗)

+
(
Ca − f

′
(a∗)

)(
1 +

Cb
Ca
β
′
(a∗)

)
dp1(a

∗)

da∗

=

[
−f ′′ (a∗)

(
1 +

Cb
Ca
β
′
(a∗)

)
+
Cb
Ca
β
′′

(a∗)
(
Ca − f

′
(a∗)

)]
p1 (a∗)
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+
(
Ca − f

′
(a∗)

)2(
1 +

Cb
Ca
β
′
(a∗)

)2

p1 (a∗) .

By equation (A14) at a∗ = ap it follows that:

d2p1 (ap) = β
′′

(ap)
(
Ca − f

′
(ap)

)
p∗1 (a) .

The latter is negative if and only if β
′′

(ap) < 0. Computing β
′′

(ap) obtain:

β
′′

(ap) = −Cb
Ca

f
′′′

(ap)f
′′
(β (ap))− β

′
(ap)f

′′′
(β (ap))f

′′
(a)

[f ′′(β (ap))]
2 .

Then β
′′

(ap) < 0 if and only f
′′′
> 0 that is the necessary and sufficient condition for the local

concavity of the equilibrium p1(a
∗) at ap.

Proof of Proposition 4: For both type of games, the point dp is the projection of ap on d. Given

t this be computed by using (15).

Lemma A3. There exists a unique action a+ = [f
′
]−1(Ca/2) and b− = [f

′
]−1(Cb/2) , such that

A+(b∗) = {a : a < a+} and B−(a∗) = {b : b < b−}.

Proof of Lemma A3: From (19) and (20) obtain: εA(a, b∗) = Ca−f
′
(a)

f ′ (a)
. Therefore, A+(b∗) ={

a : εA(a, b∗) > 1
}

= {a : Ca−f
′
(a)

f ′ (a)
> 1}. Note that a+ is unique since ∂εA(a,b∗)

∂a = −Caf
′′
(a)

[f ′ (a)]2
< 0 for

all a. The proof for B−(a∗) is similar.

Proof of Proposition 5: We first show that ap ∈ A∗+ if and only if Cb > Ca. Notice that, at

equilibrium, from (A14)
[
Cb
Ca

]2
f
′′
(ap) = f

′′
(β (ap)). If Cb

Ca
< 1 then f

′′
(ap) > f

′′
(β (ap)) and since

f
′′
> 0 it follows that ap > β(ap) .

Using (A11) obtain: f
′
(β (ap))− f

′
(ap) = Cb

Ca

[
Ca − f

′
(ap)

]
− f ′ (ap) . Being f

′′
> 0:

0 < f
′
(β (ap))− f

′
(ap) =

Cb
Ca

[
Ca − f

′
(ap)

]
− f ′ (ap)

0 <
Cb
Ca

[
Ca − f

′
(ap)

]
− Cb
Ca
f
′
(ap) <

Cb
Ca

[Ca − 2f
′
(ap)] < [Ca − 2f

′
(ap)]

⇒f ′(ap) <
Ca
2

= f
′
(a+).

Thus a+ > ap and hence ap ∈ A∗+. From Lemma A2, if f
′′′
> 0 then dp1(a∗)

da∗ < 0 for a < ap (dp1(a
∗)

da∗ >

0 for a > ap). Since da(t,d)
dt > 0 for a ∈ A∗+ it follows that dp1(a∗(t,.))

dt < 0 if a∗(t, .) < ap = a∗(tp, .)

(and dp1(a∗(t,.))
dt > 0 if a∗(t, .) > ap = a∗(tp, .)), where tp is a projection of ap given d that can
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be computed using (16). On the complementary set A∗− the function is monotonically decreasing

overtime as dp1(a∗)
da > 0 but da(t,d)

dt < 0. A similar argument proves that if Cb < Ca then ap ∈ A∗−.

Appendix B

Season #Obs Tot goals RT goals AT goals Avg total Avg RT Avg AT

1995-96 1319 3597 3490 107 2.727 2.646 0.081

1996-97 1618 4366 4173 190 2.698 2.579 0.117

1997-98 1349 3636 3502 134 2.695 2.596 0.099

1998-99 2402 6126 5835 291 2.550 2.429 0.121

Pre-1998 4286 11599 11165 431 2.706 2.605 0.101

1999-00 2427 6451 6164 287 2.658 2.540 0.118

2000-01 1597 4415 4200 215 2.765 2.630 0.135

2001-02 1588 4228 4027 201 2.662 2.536 0.127

2002-03 1594 4263 4025 238 2.674 2.525 0.149

2003-04 1359 3684 3510 174 2.711 2.583 0.128

Post-1998 15253 40766 38926 1837 2.673 2.552 0.128

Total All 19539 52365 50091 2268 2.680 2.564 0.116

Table B1: Descriptive statistics
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