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Abstract

We study sealed-bid second-price auctions with costly participation
and resale. Each bidder chooses to participate in the auction if her val-
uation is higher than her optimally chosen participation cutoff. If resale
is not allowed and the bidder valuations are drawn from a strictly con-
vex distribution function, the symmetric equilibrium (where all bidders
use the same cutoff) is less efficient than a class of two-cutoff asymmet-
ric equilibria. Existence of these equilibria without resale is sufficient
for existence of similarly constructed two-cutoff equilibria with resale.
Moreover, the equilibria with resale are “more asymmetric” and (under
a sufficient condition) more efficient than the corresponding equilibria
without resale.
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1 Introduction

We study resale in an independent private values auction setting with costly
participation, with a particular focus on efficiency. The seller uses a sealed-
bid second-price auction. Bidders are ex-ante symmetric: Their (use) values
are drawn from the same distribution function. After learning their private
valuations, bidders simultaneously decide whether to participate in the auction
or not. Bidders who choose to participate incur a common real resource cost.! 2

In the absence of resale opportunities, there is a (unique) symmetric equi-
librium of the second-price auction where each bidder bids her valuation iff it
is larger than a participation cutoff that is common to all bidders. However,
there may also be asymmetric equilibria with bidder-specific cutoffs.> We first
show that, when the valuations are distributed according to a strictly convex
cumulative distribution function, there are asymmetric equilibria which are ex-
ante more efficient than the symmetric equilibrium. Existence of asymmetric
equilibria under strict convexity has been established by Tan and Yilankaya
(2006): For any arbitrary partition of the bidders into two groups, there exists
an equilibrium where the bidders within a group all use the same participa-
tion cutoff that is different from the other group’s cutoff. We complement this
finding by showing that these two-cutoff equilibria provide a higher expected
social surplus than the symmetric equilibrium (Proposition 1). The relevance
of this result extends beyond second-price auctions, since Stegeman (1996)
shows that one of the equilibria of the second-price auction maximizes social
surplus within the class of all incentive-compatible allocation rules satisfying
the “no passive reassignment” property.*

The second-price auction allocates the object to the highest valuation bid-
der among participants in all equilibria where participating bidders bid their

!Purchasing bid documents, registering or pre-qualifying for the auction, being at the
auction site, arranging for financing ahead of time and preparing a bid (which is often
a detailed plan with documentation, especially in government procurement) are all costly
activities.

2This set-up was introduced by Samuelson (1985), and studied by, among others, Stege-
man (1996), Campbell (1998), Tan and Yilankaya (2006, 2007) and Celik and Yilankaya
(2009). Also see Green and Laffont (1984), where costs as well as valuations are private
information.

3See Stegeman (1996) for an example and Tan and Yilankaya (2006) for necessary and
sufficient conditions for existence of asymmetric equilibrium.

4An allocation rule satisfies “no passive reassignment” if the object is assigned only
to bidders participating in the auction. In Stegeman’s (1996) example of a second-price
auction with an asymmetric equilibrium, the asymmetric equilibrium is more efficient than
the symmetric one. Celik and Yilankaya (2009) provide a characterization result for efficient
auctions.



values. Yet, when the equilibrium is asymmetric, there is a possibility that a
non-participating bidder has a higher valuation than the winner of the auction.
This allocative inefficiency implies that there are potential gains from further
trade through resale. Hence we incorporate the possibility of resale (assumed
to be costless) via an optimal auction maximizing the reseller’s revenue, and
study its impact on equilibrium behavior and efficiency.

Suppose that there exists a two-cutoff asymmetric equilibrium of the second-
price auction without resale, where one group has a low cutoff and the other
group has a higher one. We show that there also exists an equilibrium that
partitions bidders the same way when resale is allowed. This resale equilibrium
is “more asymmetric” than the corresponding no-resale equilibrium: The low
cutoff decreases and the high cutoff increases (Proposition 2). The prospect
of reselling the good induces the low-cutoff bidders to enter even more aggres-
sively and the possibility of buying the object in the resale phase makes the
high-cutoff bidders even more hesitant to enter. Moreover, there is overbidding
by low-cutoff bidder types who hope to resell: They bid their adjusted values
(payoffs inclusive of the resale phase), which are higher than their use values.

Fixing participation and bidding behavior in the initial auction, resale
enhances efficiency as the object is potentially transferred to a higher-value
bidder. However, the possibility of resale may also affect the equilibrium cut-
offs and bids. Nevertheless, provided that a sufficient condition is satisfied,
allowing resale improves ex-ante efficiency: Whenever there is a two-cutoff
asymmetric equilibrium without resale, the corresponding more asymmetric
equilibrium with resale yields a higher social surplus (Proposition 3). The
efficiency gains from resale are not solely the result of savings in participation
costs. First, our sufficient condition is on the distribution of valuations and
hence independent of the magnitude of the participation cost. Second, allow-
ing resale may actually increase participation, and hence total participation
cost incurred. Similarly, this efficiency result is not an artifact of the modeling
choice that there are no participation costs in the resale stage: We provide
examples with costly bidding in resale where asymmetric equilibria exist and
yield higher surplus than the corresponding no-resale equilibria. We discuss
this issue further in our concluding remarks.

Resale is commonly observed after auctions in many markets. There are a
few sources of gains from resale trade offered in the literature. New bidders
or more information to existing bidders may arrive between the initial auction
and the resale stage (Bikhchandani and Huang, 1989; Haile, 1996 and 2003;
Bose and Deltas, 2006). Bidder asymmetries may also cause inefficiencies
in first-price auctions (Gupta and Lebrun, 1999; Hafalir and Krishna, 2008;
Cheng and Tan, 2010; Lebrun, 2010a; Virdg, 2013) and in optimal auctions



maximizing the seller’s revenue (Zheng, 2002).°

In second-price and English auctions, even when resale is allowed, (use)
value-bidding remains to be an equilibrium (see, for example, Haile, 1996).
This equilibrium allocates the object to the highest value bidder and hence
there is no resale on the path of play. However, bidding one’s value is no
longer weakly dominant when resale is allowed. Garratt and Troger (2006)
identify alternative equilibria where even a speculator with no use value can
make positive profits. Garratt, Troger, and Zheng (2009) construct equilib-
ria for the English auction with a designated bidder (potential reseller) which
can then be used to support collusion (by rotating the designated bidder).
In these equilibria, bidders other than the designated one drop out of the
auction immediately, if their values are below a common cutoff.5 Our equilib-
rium construction for second-price auctions with costly participation follows a
similar participation cutoff structure. However, unlike in Garratt, Troger, and
Zheng (2009), our asymmetric equilibria allow for designating multiple bidders
who use a lower participation cutoff than the others and hence who all have
the potential to resell the good. Regardless of whether they are low or high-
cutoff bidders, all participants bid their adjusted values that reflect potential
gains from resale. As we discussed above, when there are participation costs,
second-price auctions (without resale) may have asymmetric equilibria in un-
dominated strategies, where all participants bid their values. We investigate
the resale opportunities naturally arising from these equilibria.

When resale takes place under asymmetric information, any equilibrium
with a positive probability of resale would allocate the good in an ex-post
inefficient manner: The bidder who ends up with the good at the end of the
resale stage is not necessarily the bidder who values it the most. This is the
reason that the equilibria identified by Garratt, Troger, and Zheng (2009)
induce a lower social surplus than the use-value bidding equilibrium. Such
an allocative inefficiency is also present for the asymmetric equilibria of the
second-price auction. Despite this allocative inefficiency, our paper introduces
a welfare-enhancing role for resale when participation is costly.

The closest paper to ours is by Xu, Levin, and Ye (2013), who study
second-price auctions with resale, where valuations and participation costs

5 Also see Lebrun (2012).

6Similarly, Pagnozzi (2007) shows that a strong bidder may drop out of an ascending-
price auction before the price reaches her value to improve her bargaining position in resale.
Lebrun (2012) considers the second price auction with resale where two asymmetric bidders
face a common reserve price and personalized entry fees. He shows that this auction has
an equilibrium in mixed bidding strategies which yields the same revenue as in Myerson’s
(1981) optimal auction.



are both private information. They show that a symmetric equilibrium exists
and is unique under some conditions. Participants in the initial auction bid
their adjusted values and there is resale in equilibrium. Resale opportunities
arise because of differences in participation costs: When a low-cost bidder
wins the object, she can resell it to a high-cost bidder with a higher valuation
(who did not participate in the initial auction). Further analytical results are
difficult to obtain with two-dimensional private information. Their numerical
analysis suggests that the effect of resale on efficiency (and on revenue) is
ambiguous. In our model with commonly known participation costs, we show
that heterogeneity of costs is not necessary for equilibrium resale. Instead,
resale opportunities are generated by asymmetric equilibria. This setting also
allows us to obtain an analytical result on the impact of resale on efficiency.

In the next section, we describe the environment and study the benchmark
case, where resale is not allowed. We study resale in Section 3, analyzing
the optimal resale auction, and the participation and bidding behavior in the
initial auction. We provide some concluding remarks in Section 4. All proofs
are in the Appendix.

2 No Resale

We consider a symmetric independent private values environment. There is a
risk-neutral seller who owns an indivisible object and is selling it via a sealed-
bid second-price auction without a reserve price. Her valuation is normalized
to be 0. There are n > 2 risk-neutral (potential) bidders. Let v; denote the
(use) value of bidder i € {1,...,n} for the object. Bidders’ valuations are
independently distributed according to the cumulative distribution function
(cdf) F on [0,1], with continuously differentiable and positive density function
f. Bidders know their own valuations. We assume that the monotone hazard
rate condition is satisfied: %U()”) is strictly decreasing in v. Note that this
condition automatically holds for convex distribution functions (for weakly
increasing density functions f).

There is a participation cost, common to all bidders, denoted by ¢ € (0, 1):
Bidders must incur this real resource cost in order to be able to submit a
bid.” All bidders make their participation and bidding decisions simultane-

ously. They know their valuations when making these decisions.

"For our positive results about equilibria in auctions with or without resale, ¢ can also
be interpreted as an entry fee (charged by the seller).
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2.1 Equilibrium

We first study the benchmark case where there is no resale possibility. If a
bidder decides to participate in the second-price auction, she cannot do better
than bidding her own valuation. Accordingly, we only consider (Bayesian-
Nash) equilibria in cutoff strategies: Fach bidder bids her valuation if it is
greater than a cutoff point and does not participate otherwise.® Even though
all participating bidders bid in the same truthful manner, there may be asym-
metric equilibria where bidders have different participation cutoffs. In what
follows, we restrict attention to equilibria with (at most) two cutoffs. Since our
results are of the existence/possibility variety, this restriction has no bearing
on them, while simplifying the exposition considerably.’

Suppose that [ bidders use the low cutoff a and h = n — [ bidders use the
high cutoff b in some equilibrium, with 0 < a < b <1 and 1 <[ < n. These
cutoffs are determined by indifference (to participation) conditions. To find
them, first consider the participation decision of one of the [ bidders who has
the lower cutoff a and whose valuation is also a. Suppose that all other bidders
are following their equilibrium strategies. She obtains the object iff she is the
only bidder to participate, which happens with probability F' (a)l_1 F (b)h, and
hence pays 0 if she wins. Her expected payoff from participation is then

Fa) " F®)a—-c (1)

Similarly, the expected payoff of a high-cutoff bidder with valuation b is

b
F(a)lF(b)h1b+F(b)h1/ (b —w)dF (w)' — ¢

b
— PO F () at / F (w)' du] — c. @)
Define the following functions: 7 (a,b) = F (a)" ' F ()" a and 7y (a,b) =
F®)" " [F(a)a+ [°F (w) dw)].
The following conditions are necessary and sufficient for (a*,b*) to be equi-
librium cutoffs:

7 (a*,b*) > ¢, with equality if a* > 0, (3)
g (a*,0") < ¢, with equality if b* < 1.

8We adopt the convention that if a bidder’s cutoff is 0 (respectively, 1) all (respectively,
none of) her types are participating. The participation decisions of these zero measure cutoff
types are inconsequential.

9Tan and Yilankaya (2006) show that, for any c, log-concavity of F (-) is sufficient for
the upper limit of distinct cutoffs to be two in any (cutoff) equilibria.



Any bidder with a value lower than ¢ will have a negative payoff from partici-
pation. So, we know that a* > ¢ > 0, and the first condition will be satisfied
with equality.'’

We note the following observation, which will be used later:

Remark 1 7, (a,b) and 7y (a,b) are strictly increasing in a and b for a > 0.
(71 (0,b) = 0 Vb and 7y (0,b) is strictly increasing in b.)

Notice that, since we allow for the possibility that a = b, the symmetric
equilibrium is a special case within the class of (at most) two cutoff equilibria.
There always exists a symmetric equilibrium where all bidders use the same
participation cutoff a = b = vs € (¢, 1), where

F(v)" oy =c. (4)

Tan and Yilankaya (2006) show that strict convexity of F is sufficient for
existence of two-cutoff asymmetric equilibria for any [, the number of bid-
ders using the lower cutoff. It may be helpful to go over their argument
with graphs, which we will also utilize for our results. Consider the set
A = {(a,b):0<a<b<1} in R? that identifies feasible participation cut-
off pairs, and the curves given by 7, (a,b) = ¢ and 7y (a,b) = ¢ in A. When
F is strictly convex, the second curve is steeper than the first one at (vs, vs),
the symmetric equilibrium cutoffs. If these curves intersect in the interior of A,
their intersection yields the cutoffs for an asymmetric equilibrium, satisfying
(3) with equalities (Figure 1). Otherwise, we have a corner asymmetric equi-
librium with a* € [c,vs) and b* = 1, where 7 (a*,1) = ¢ and 7y (a*,1) < ¢,
as depicted in Figure 2.

2.2 Efficiency

We can write down the social surplus as a function of the two cutoff points in
the no-resale setting:

S(a,b)—/ vF(b)hdF(v)lJr/b vdF (0)"™ =1 (1= F(a))c—h(1—F(b))e.
(5)

The first integral measures the expected value of the object for the winner of
the auction when she is a low cutoff bidder with a value on interval [a, b], and

10We keep the conditions in their current forms to make them directly comparable to the
corresponding conditions in the resale case, where a bidder with valuation less than ¢ may
participate in order to sell later.



0.5 T 2
2

1 @6
0.4 T s

- o

a*,b*

0.3 T ( )
0.2 T (v, )
0.1
0.0 t t I t I

0.0 0.1 0.2 0.3 0.4 0.5 a

Figure 1: F(v) = v? n = 2,¢ = 0.01. Symmetric equilibrium with v, = 0.215.
Asymmetric equilibrium with a* = 0.11, * = 0.301.

b
1.0 e ——
a,

o Ly

< =
0.8 T “4) : T

(s, v5)
0.6 T T
0.4 T T
0.2 T T
0.0 —
00 02 04 06 08 1.0 a

Figure 2: F(v) = v?,n = 2,¢ = 0.4. Symmetric equilibrium with v, = 0.737.
Asymmetric equilibrium with a* = 0.4,0* = 1.



the second one is the expected value for a winner with a valuation higher than
b. The last two terms are expected participation costs incurred by all bidders.
Note that the seller’s valuation is normalized to be 0 and the payment made
by the winning bidder is just a transfer to the seller.

The derivatives of this social surplus function with respect to its two argu-
ments can be written by referring to functions 7, and 75 that we just defined:

w — _If (o) [Fr(a,b) = ], (6)
dS (a,b) B .
o~ hf®)[Tm(a,b) — .

Therefore, the social surplus is decreasing in a and increasing in b for the set
of points where 7y (a,b) < ¢ < 7, (a,b), i.e., the lens-shaped areas in Figures
1 and 2. Accordingly, when F' is convex, social surplus will be higher on the
asymmetric equilibria identified by Tan and Yilankaya (2006) in comparison
to the symmetric equilibrium.!*

Proposition 1 If F is strictly convex, then, for anyl € {1,2,...,n — 1}, there
exists an asymmetric no-resale equilibrium, where [ bidders use cutoff a* and
h = n — 1 bidders use cutoff b* > a*, that generates a higher social surplus
than the symmetric equilibrium.

This result holds regardless of the magnitude of the participation cost c,
the number of bidders n, and the way bidders are classified into low and high-

cutoff groups. For given levels of ¢ and n, strict convexity of F' in Proposition 1
F(v)

can be replaced with the weaker local condition that — = is strictly increasing

at the symmetric cutoff v, defined in (4). This local condition is all that is
needed to generate the lens-shaped areas such as those in Figures 1 and 2.

Tn both of the examples in Figures 1 and 2, the asymmetric equilibrium payoff of the
low-cutoff bidder is (weakly) higher than her symmetric equilibrium payoff (regardless of her
valuation). The payoff ranking of the equilibria is reversed for the high-cutoff bidder. These
equilibrium properties are most evident in the second example, since the high-cutoff bidder
never participates under the asymmetric equilibrium and the low-cutoff bidder acquires the
good by incurring the participation cost only. But for both examples, the sum of the ex-ante
expected payoffs of the two bidders is larger under the asymmetric equilibrium. Moreover, if
the role of the low-cutoff bidder is assigned to the two bidders with equal probabilities, then
both bidders are weakly better off at the interim stage under the asymmetric equilibrium,
regardless of their valuations. This equal assignment procedure can be supported if the
bidders have access to a public randomization device, as in Garratt, Troger, and Zheng
(2009), or if they are facing each other repeatedly in a series of independent auctions, as in
Bikhchandani and Riley (1991).



Strict convexity implies that @ is strictly increasing for all v.!? Finally, note
that the result identifies at least n—1 distinct (ignoring permutations of bidder
identities) asymmetric equilibria of the second-price auction, and each of them

has a higher surplus than the symmetric equilibrium.'?

3 Resale

Asymmetric equilibria of the second-price auction with participation costs,
such as those we discussed above, have the following feature: Even though
the object is obtained by the bidder who has the highest valuation among
participants, a nonparticipant may have a higher valuation. Therefore, when
the winner of the auction has a valuation which is lower than the participation
cutoff of another bidder, there are potential gains from further trade. To
investigate this issue, we now allow for a resale stage where the winner of the
initial auction can design her own resale auction for potential bidders.

Timing is as follows: Bidders make participation and bidding decisions
simultaneously in the initial auction. The winner designs a resale auction
if she chooses to do so. Others make their simultaneous participation and
bidding decisions in this resale auction.

We assume that the highest bidder learns that she is the winner and does
not learn others’ bids.!* We also assume that there are no participation costs
in the resale stage, and discuss this assumption in our concluding remarks.

12Since the second-price auction has an (ex-ante) efficient equilibrium in this setting
(Stegeman, 1996), Proposition 1 implies that the efficient auction is asymmetric for strictly

convex distribution functions. There is a connection between optimal (revenue-maximizing)
and efficient auctions. Following Myerson (1981), define J (v) = v — 1}{”()”) as the virtual
value of a bidder with value v. In Celik and Yilankaya (2009), we showed that, if 2% is
strictly increasing, then the optimal auction is asymmetric, implying (using the connection
F(v)
v

we mentioned) that the efficient auction is asymmetric when is strictly increasing.

13The equilibria identified in this proposition are the only asymmetric equilibria when
F () is log-concave (see Footnote 9). Using the results in Celik and Yilankaya (2009) and
the parallels between the efficient and the optimal auctions, we can show that the social
surplus is maximized with an asymmetric equilibrium where [ = 1 and h = n — 1 under
log-concavity.

14We make this no-disclosure assumption only for notational simplicity. Full disclosure
of all bids (or any other intermediate disclosure policy) would not affect our equilibrium
outcome since our equilibrium construction is based on adjusted value-bidding: The partic-
ipants in the initial auction will bid their adjusted values inclusive of the expected resale
payoff and no bidder in the initial auction will participate as a buyer in the resale phase.
See Lebrun (2010b) for a discussion of importance of bid disclosure policies, especially in
first-price auctions with resale.



We look for (Perfect Bayesian) equilibria of this game where bidders are
divided into two groups that use two (potentially distinct) participation cut-
offs in the initial auction, just like before. Similarly, we restrict attention to
equilibria in which participants in the initial auction bid their adjusted values
(gross expected payoff inclusive of the resale stage).'s

We analyze the optimal resale auction first (given the restrictions above),
followed by bids and equilibrium participation cutoffs in the initial auction.

3.1 Optimal resale auction

Suppose that [ bidders use cutoff « and h = n — [ bidders use cutoff b in the
initial auction, with 0 < a < b < 1 and 1 <[ < n. Suppose further that
bids are monotone increasing in valuations and that bidders with identical
valuations bid the same amount (if they participate). In these equilibria we
are constructing, there are opportunities for resale only if a bidder wins the
initial auction with a value between a and b. The bidders who are using the
higher cutoff b in the initial auction are the potential buyers in the resale stage.
The winner of the initial auction (one of the | bidders who use a as the cutoff
and who has a valuation in [a, b]) has learned that none of these high-cutoff
bidders have a value higher than b, otherwise they would have participated
in the initial auction and acquired the good. Therefore, the problem she is
facing is finding the optimal auction for h > 1 bidders whose valuations are

independently distributed on [0, b] according to the cdf %.m’”

15Note that bidding this “adjusted value” is no longer the dominant strategy even condi-
tional on participating, since this value is calculated using the equilibrium expected payoff
from the resale auction. As we discussed before, Garratt and Troger (2006), Garratt, Troger,
and Zheng (2009), and Lebrun (2012) identify other equilibria of second-price auction with
resale, where bidders do not bid these adjusted values. Existence of such alternative equi-
libria is not pertinent to our results, which are of the existence/possibility variety.

16Since cdf F (-) satisfies the monotone hazard rate condition, so does the conditional
cdf F (-) /F (b) (e.g., Hafalir and Krishna, 2008 and Cheng and Tan, 2010). This condition
ensures that we are in the “regular case” with increasing virtual valuations. Notice also that
when h = 0 (or a = b), we have symmetric participation in the initial auction, and hence
there is no room for resale.

1"We are describing the resale stage only on the equilibrium path (or rather when the
initial auction behavior is described by two participation cutoffs and monotone bid func-
tions). We do not formally define the full strategies at the resale stage to keep the exposition
simple. Recall that the bids made in the initial auction are not disclosed. However, the
equilibrium outcome we describe is robust to disclosure of bids: There are many resale-stage
beliefs that would support this outcome including the passive one where the reseller does
not update when she sees an off-the-equilibrium-path bid.

10



If the reseller’s valuation were commonly known, this would be the standard
optimal auction problem & la Myerson (1981). However, it is not known, and
so we have an “informed principal” problem.'® Fortunately, it is possible to
show that this does not matter in this independent private values setting. It
is optimal for each type of the reseller in [a, b] to choose a standard optimal
auction for that type.'’

There are many auctions which are expected-payoff equivalent for the re-
seller and the bidders (the revenue equivalence theorem), but we will focus on
a second-price auction with an optimal reserve price r(w) for the reseller with
valuation w € [a, b], satisfying?’"?!

Fb) - F(r)
f(r)

The monotone hazard rate condition implies that, for any b, the right hand
side of (7) is decreasing in r for r € [0,b]. Thus there is a unique value for
r(w) € (w,b]. Note that we have ' (w) € (0,1) and r (b) = b.

A bidder with value v participates in the resale auction if v > r, and bids
v. It is straightforward to calculate the expected payment she makes to the
reseller if she wins the resale auction:??

(7)

r=w+

(2

o F ()" )
a(v,r)=wv /—F(v)h_ld . (8)

T

18 Garratt, Troger, and Zheng (2009) avoid this problem by restricting attention to resale
mechanisms that the reseller cannot participate by sending a message at the same time as
(or after) the other bidders. They allow for bidder valuations to be drawn from different
distributions. They highlight certain properties of Myerson’s optimal auction when it is
used as a resale mechanism for these bidders. Our optimal resale auction is much simpler
since the values of the potential bidders are identically distributed at the resale stage.

YYilankaya (1999) shows this in the bargaining context, i.e., when h = 1. The same
argument applies for h > 1 (Yilankaya, 2004, available from the authors upon request): The
Myerson auction is optimal when the seller’s valuation is common knowledge. It is also the
seller’s ex-ante optimal mechanism. Myerson’s principle of inscrutability (1983) implies that
it will be the informed principal’s optimal mechanism. Also see the discussions in Maskin
and Tirole (1990), Garratt, Troger, and Zheng (2009), and Mylovanov and Troger (2014).

200n the equilibrium path, it does not matter which of the optimal auctions is used in the
resale stage. However, the choice of the resale auction matters when considering potential
deviations in the initial auction.

2'We suppress the dependence of 7 on b for notational simplicity.

22This expression may be familiar as the equilibrium bid function in a first-price auction
with h bidders whose valuations are distributed according to % on [0, b]. Revenue equiv-
alence theorem implies that this is the expected payment of the winner in the second-price
auction.

11



3.2 Equilibrium bids in the initial auction

Now that we discussed the optimal resale auction on the equilibrium path,
we are ready to study bidding in the initial auction. As we mentioned above,
we look for an equilibrium in which bids are given by gross expected payoffs,
taking the resale stage into account. When the winner is a bidder with a
valuation higher than the high cutoff b, there is no room for resale and the
winner’s payoff is equal to her (use) value. On the other hand, when the
winner is a low-cutoff bidder with a valuation v € [a,b], her gross payoff is
equal to the expected continuation payoff in the resale stage. In the Appendix

b
(Lemma 1), we show that this continuation payoff is b — [ Fg((:))h)h

dx, where

r (z) is the optimal reserve price for a bidder with valuation z, by using the
revenue equivalence theorem.?3

The next step is establishing the existence of an equilibrium where each
participant in the initial auction bids her adjusted value. This result is not
trivial, since each bidder’s resale stage payoff also depends on her own bid in
the initial auction. We show in the Appendix (Lemma 2) that, conditional
on participating according to their respective cutoffs, the optimal bid for a
low-cutoff bidder is

No ifv<a
b
Bv) = b—fpg((g),zhdx ifa<v<b , (9)
) ifb<w

and the optimal bid for a high-cutoff bidder is

B(U)—{NO ifo<bd (10)

v fb<wv '’

where “No” denotes not participating.

High-cutoff bidders bid their use values if they participate, since their par-
ticipation precludes a resale stage. The equilibrium bid of a low-cutoff bidder
is higher than her use value when it is in [a, b). Bidders with such valuations
are aware of the possibility that they can resell the good to a high-cutoff bidder
who has a higher use value. Since this possibility is decreasing in the valuation
of the low-cutoff bidder, the extent of overbidding is decreasing in v (and it is
eliminated for v > b).

B Garratt, Troger, and Zheng (2009) use a similar argument to the proof of this Lemma
to find the resale-stage payoffs of bidders in an English auction.
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Bidding functions §(-) and 3 (-) imply that the initial auction is ex-post
efficient in a constrained sense: It allocates the good to the bidder with the
highest valuation among participants. Any inefficiency in the initial auction
(therefore, any resale opportunity) is due to possible asymmetric participation
behavior, which we discuss next.

3.3 Equilibrium participation in the initial auction

A bidder’s participation decision in the initial auction will depend on the com-
parison of the participation cost with the payoff differential generated by her
participation, taking into account the resale stage. In the Appendix (Lemma
3), we show that, for each bidder, this payoff differential is (weakly) increasing
in her valuation when other bidders are using cutoff strategies. Therefore, it
is sufficient to consider participation incentives for bidders whose valuations
are equal to their respective cutoffs.

Consider one of the [ low-cutoff bidders who has a valuation equal to her
cutoff a. This bidder cannot buy the object in a resale auction since all the
equilibrium reserve prices will be higher than a. When she enters in the ini-
tial auction, she would be the winner if she is the only participant. Given
the other bidders’ participation decisions, the probability of this happening
is F'(a)'""" F (b)". This sole participant does not make any payment, and her
expected payoff in the continuation game is [ (a). Therefore, her payoff dif-
ferential for participation in the initial auction is

1 (a,0) = F(a) " F(0)" 5 (a). (11)

Now consider one of the h high-cutoff bidders who has a valuation equal
to her cutoff b. If she participates (and bids b), then her expected payoff will
be

b

F ()" [F(a)b+ / [b— B (w)]dF (w)']. (12)

To see this, notice that she wins only if none of the h — 1 high-cutoff bidders
participates and all the [ low-cutoff bidders have valuations less than b. She
pays 0 if none of the low-cutoff bidders participates (when all of them have
valuations less than a). Otherwise she pays the bid of the highest-valuation
low-cutoff bidder, 3 (w).?

24There will not be a resale stage if she participates, since resale happens only if a low-
cutoff bidder wins the object with valuation in [a,b], and these bidder types bid less than
b, ie., B (w) < b for w < b.
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On the other hand, if she stays out, then her expected payoff will be

b

PO [ o= albr )] ar @), (13)
since resale auction occurs if none of the h—1 other high-cutoff bidders partici-
pates in the initial auction and the highest valuation among low-cutoff bidders
is in [a,b]. The bidder who has this highest valuation w sets the reserve price
r(w), so the expected payment of type-b bidder is « (b, 7 (w)) (see (8)).

Therefore, the payoff differential for a high-cutoff bidder with valuation b
is
b
my (a,0) = F (0)" 7 [F (a) b+ / [ (b, (w)) = B (w)]dF (w)'].  (14)

a

We prove the following in the Appendix.

Remark 2 7, (a,b) is increasing in a and b for a > 0, and 7y (a,b) is in-
creasing in a.

We are finally ready to identify the conditions that equilibrium cutoffs a**
and b** must satisfy, analogous to conditions (3) in the no-resale setting:

oo (0,

¢, with equality if a** > 0, (15)

>
< ¢, with equality if o™ < 1.

These conditions admit a symmetric solution, with a** = b** = wv,, the
symmetric equilibrium cutoff of the benchmark no-resale case. There is no
resale in this equilibrium, since the bidder with the highest valuation receives
the object.

Our next result is about the existence and properties of equilibria with
asymmetric cutoffs, where resale is an equilibrium phenomenon. Whenever
there is an asymmetric equilibrium (with two cutoffs) in the benchmark no-
resale case, there will also be an asymmetric equilibrium with resale. Moreover,
the equilibrium with resale will be “more asymmetric.”

Proposition 2 Suppose that there exists an asymmetric equilibrium in the
benchmark case of no-resale withl € {1,2,...,n — 1} bidders using the cutoff a*
and h = n—I[ bidders using the cutoff b* > a*. Then there exists an asymmetric
equilibrium with resale, where | bidders use cutoff a** and h bidders use cutoff
b** > a**. Moreover, a** < a*and b™ > b* (with strict inequality if b* < 1).
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Figure 3: F'(v) = v?,n = 2,¢ = 0.01. Symmetric equilibrium with v, = 0.215.
Asymmetric equilibrium with a** = 0, b** = 0.454.
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Figure 4: F(v) = v?,n = 2,¢ = 0.4. Symmetric equilibrium with v, = 0.737.
Asymmetric equilibrium with ¢** = 0.044, b** = 1.

15



A key step in our proof is showing that 7y, (a,b) > 7, (a,b) and 7 (a,b) <
7y (a,b) for b > a > 0. These inequalities imply that the asymmetric no-
resale equilibrium cutoffs (a*, b*) lie below the curve given by my (a,b) = ¢
and above the curve 7 (a,b) = ¢. The remainder of the argument is very
similar to our discussion of asymmetric equilibria in the no-resale benchmark.
If these two curves intersect in the interior of A = {(a,0): 0 <a <b < 1},
their intersection yields the cutoffs for an asymmetric equilibrium with resale,
satisfying (15) with equalities. Otherwise, we have a corner equilibrium either
with a** = 0 (Figure 3) or with " = 1 (Figure 4). The resulting equilib-
rium cutoffs (a**, b**) are more asymmetric than the corresponding no-resale
equilibrium cutoffs (a*,b*) in the sense that they are further away from the
symmetric equilibrium cutoff v,.

In an equilibrium such as the one described above, a low-cutoff bidder par-
ticipates and bids more aggressively in the initial auction due to the opportu-
nity to resell to a high-cutoff bidder. This opportunity in turn is supported
by some types of the high-cutoff bidder remaining out of the initial auction to
buy later in the resale stage. This asymmetry in behavior arises as an equi-
librium phenomenon even though bidders are ex-ante symmetric, as it is the
case in the no-resale benchmark. A similar speculative motive also appears
in the symmetric equilibrium of Xu, Levin and Ye’s (2013) model with two
possible (privately-known) participation costs: Bidders with high cost tend to
stay out of the initial auction and the low-cost bidders over-enter and over-bid
with the hope of reselling the object. With Proposition 2 we show that this
speculative motive and resale can arise in equilibrium even when all bidders
have the same participation cost.

3.4 Efficiency with resale

To examine the welfare effects of resale, we consider the social surplus as a
function of two participation cutoffs. This surplus function is constructed
under the assumption that, once the bidders enter in or stay out of the initial
auction according to these participation cutoffs, they follow the equilibrium
bidding and resale strategies described above.

S(ab) = / ’ [F(r(w))hw+ / b udp(mh] 4F (w) (16)

(w)
+/b wdF (w)""' —1(1— F(a))c— h(1 - F(®)c.

The first integral term refers to the expected surplus if the initial auction
allocates the good to a low-cutoff bidder with valuation in [a, b]. This expected
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surplus is calculated by taking the possibility of resale into account. The
second integral term is the expected surplus when the highest valuation among
all bidders is higher than cutoff b. The last two terms measure the expected
cost of participation.

For fixed cutoffs, the possibility of resale increases total welfare: S (a,b) >
S (a,b) for a < b, since

b b
S(a,b)—é(a,b):/ /( )(v—w)dF(v)hdF(w)l. (17)

This difference is simply the surplus gain of transferring the object from a
low-cutoff bidder with value w to a high-cutoff bidder with a higher value v in
the resale phase.

Consider an equilibrium in the benchmark case of no-resale with asym-
metric cutoffs a* and b*. As we just observed, if bidders were to use the
same cutoffs when resale is allowed, then the surplus would be higher, i.e.,
S (a*,b*) > S (a*,b*). However, the possibility of resale may also change equi-
librium participation behavior of the bidders. Therefore, we need to know
how the value of function S (a, b) changes as we move from the no-resale equi-
librium cutoffs (a*,b*) to resale equilibrium cutoffs (a**,b**). With our next
result, we provide a sufficient condition for the social surplus to increase when
resale is allowed.

Proposition 3 Suppose that there exists a two-cutoff asymmetric equilibrium
in the benchmark case of no-resale and that lg(;’)) 1s weakly increasing. Then
there exists an asymmetric equilibrium with resale which generates a higher

social surplus than does this asymmetric no-resale equilibrium.

To prove the proposition, we first show that the social surplus function
S (a,b) is decreasing in a and increasing in b whenever 7y (a,b) < ¢ < 71, (a,b),
if Ig((;))) is weakly increasing. The result then follows from inequalities ™ < a*
and b** > b*.

Proposition 3 provides a sufficient condition on the distribution of valua-
tions only. Hence, it is independent of the magnitude of the participation cost
¢, the number of bidders n, and how these bidders are divided into two groups.
The condition is satisfied when tl}? ;:df for the valuations is a power function,

vy(v ).25

Le., F'(v) = v for a> 0 (since 775 = a

BFor F (v) = v with a > 1, it follows from our Proposition 1 together with the results of
Stegeman (1996) and Tan and Yilankaya (2006) that one of the two-cutoff equilibria of the
second-price auction (without resale) is efficient: This equilibrium maximizes social surplus
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4 Concluding Remarks

We study resale and show that it can be an equilibrium phenomenon in a
symmetric second-price auction with costly participation. The equilibrium
with resale is more asymmetric than the corresponding one without resale due
to speculative motives. When resale is not allowed, we identify asymmetric
equilibria that are more efficient than the symmetric one if the cdf of bidders’
valuations is strictly convex. We provide a sufficient condition for resale to
improve (ex-ante) efficiency. Therefore, when F' is strictly convex and this
sufficient condition is satisfied, we have a ranking: Symmetric equilibrium (re-
sale allowed or not) is less efficient than the asymmetric no-resale equilibria we
identified, which in turn are less efficient than the corresponding asymmetric
resale equilibria.

There is ambiguity for the effect of resale on the expected number of
participants, and hence on the expected participation cost incurred. This
can be seen by considering the examples depicted in Figures 3 and 4, where
n = 2 and F(v) = v2. When ¢ = 0.01, no-resale asymmetric equilibrium
cutoffs are (a*,b*) = (0.11,0.301), while with resale equilibrium cutoffs are
(a**,b™) = (0,0.454), with a decrease in participation. However, resale in-
creases participation when ¢ = 0.4, because the equilibrium cutoffs change
from (0.4,1) to (0.044,1): The high-cutoff bidder does not participate in ei-
ther case while the low-cutoff bidder is more likely to participate when there
is resale. This example also demonstrates that the efficiency gains from resale
are not only due to savings in participation costs.

We assume that there are no participation costs at the resale stage. One
possible justification is that the reseller may follow a bidder qualification pro-
cedure which is less stringent than that of the original seller, e.g., due to the
original seller being a public entity (see Xu, Levin, and Ye, 2013, who also
assume costless resale). However, the main reason for our assumption is to
keep the analysis simple. When there are participation costs and more than
one potential bidders for the resale (i.e., h > 1), the optimal resale auction
would be more complicated than a standard auction; in particular, it could
be asymmetric (Celik and Yilankaya, 2009). Nevertheless, we would like to
stress that the welfare improvement under resale is not an artifact of the cost-
less resale assumption. To illustrate this point, we reconsider the examples in

within the class of incentive-compatible allocation rules that can assign the object only to
bidders participating in the initial auction. (See Footnotes 4, 9, and 12.) Our Proposition 3
implies that resale improves efficiency further by introducing the possibility of allocating the
good to an initially non-participating bidder. The same observation applies to maximum

entropy distribution functions with a mean larger than 1/2, i.e., F (v) = 62;:11 with A > 0.
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Figures 3 and 4 (with n = 2 and F(v) = v?) under the alternative assumption
that bidding in the resale auction is as costly as bidding in the initial auction.
The new participation cutoffs are different than they were in the costless resale
case: The asymmetric costly-resale equilibrium cutoffs are (0,0.433) for par-
ticipation cost ¢ = 0.01, and they are (0.376,1) for participation cost ¢ = 0.4.
For either cost level, the social surplus of the asymmetric costly-resale equi-
librium (net of the participation costs in the initial auction and in the resale
stage) is larger than the corresponding no-resale equilibrium social surplus.?

The effect of resale on expected revenue is also unclear. Opportunity to
resell the object induces higher participation and higher bids by some of the
bidders, leading to a positive impact on revenue. Other bidders, however,
would participate less since they might have the option to buy the object
later, identifying a countervailing factor. Therefore, the net effect of resale on
revenue is ambiguous, as can be seen in the following classes of examples: In
the asymmetric no-resale equilibrium we construct, if some bidders never par-
ticipate in the auction regardless of their values and at least two other bidders
participate with positive probability (i.e., if b* = 1 and [ > 1), revenue would
be higher in the corresponding equilibrium with resale (since the participating
bidders will enter with higher probability and bid more). On the other hand,
allowing for resale would eliminate all revenue if the asymmetric equilibrium
with resale has only one bidder participating with a positive probability (i.e.,
if 0* =1land [ =1).

Finally, in our model, bidders make their participation and bidding deci-
sions simultaneously. Another possibility is bidders making their participation
decisions first and then bidding after having observed the number of partic-
ipants (e.g., Xu, Levin, and Ye, 2013). This alternative scenario (or even
observing the identities of participants) would not change our results, since in
equilibrium all bidder types bid their adjusted values inclusive of the payoff
from resale stage.

26 As one would expect, the costly-resale asymmetric equilibria produce a lower social
surplus than their costless-resale counterparts.
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5 Appendix

Proof of Proposition 1 (no-resale)

Following the proof of Proposition 3i in Tan and Yilankaya (2006), for all
b € [vs, 1], define ® (b) implicitly as the value of a which solves 7, (a,b) = c.
Notice that function ® (b) is continuously differentiable, strictly decreasing,
and that ® (vs) = v,. For all b € [vg, 1], also define

g(b) =7 (®(0),b) —c.

This function is also continuously differentiable with ¢ (vs) = 0. According
to the no-resale equilibrium conditions (3), the two equilibrium cutoffs are
identified as b* € [vg, 1] and a* = @ (b*) € (0,v,] such that ¢ (b*) < 0, with
equality if b* < 1. This confirms the existence of the symmetric equilibrium
at a* = b* = v,. Tan and Yilankaya (2006) show that when F is strictly
convex, function g (-) is strictly decreasing around v,. This implies that the
equilibrium conditions are satisfied for at least one pair of asymmetric cutoffs:
FEither there exists a b* € (vg,1) such that g(b*) = 0 (thus there exists an
asymmetric equilibrium with b* as the high cutoff and ® (b*) as the low cutoff),
or g (1) < 0 (thus there exists an asymmetric equilibrium with 1 as the high
cutoff and @ (1) as the low cutoff).

Now consider the smallest value of b that satisfies these equilibrium con-
ditions: b = min {b > v, : g (b) < 0, with equality if b < 1}. b is well-defined
since ¢ (+) is continuous and it is strictly decreasing for values close enough to
vs. To see that surplus is higher under cutoffs b and ® (5), write S (<I> (E) ,5) —

S (vs,vs) as

/ (85(@:321)) ,b) 0S (%éb),b) &' (b))db

s

= /(—hf(b) [Fr (2 (b),b) — ] = 1f (a) [7r (® () ,b) — ] @' (b))db

N
~~ ~~
0

g(b)

b
~ [ hmewa

By definition of b, the integrand is positive for all b € (03,5), proving that
S (@ (b),b) > S (vs,v,). m
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Lemma 1 Consider a low-cutoff bidder with value w € [a,b] who won the
wniatial auction. Her expected payoff from the resale phase is

b h
sy =v- [0, (18)
F(b)
w

Proof Consider the standard optimal auction problem where the seller’s
value is w € [a, b], there are h > 1 bidders whose valuations are independently
distributed on [0, b] according to cdf %, where 0 < a < b < 1. Note that
(18) is just the expected payoff of the seller, obtained from the standard for-
mulation (see Myerson (1981)) by using a change of variables to incorporate
the reserve price. Here we give a heuristic argument as well: The revenue
equivalence theorem implies that the continuation payoff for the winner of the
initial auction is a continuous function of her valuation and its derivative at
each valuation is equal to the probability that the bidder will keep the good at
the end of the resale phase. Bidders with v > b will not resell the object if they
win the initial auction. Accordingly, the continuation payoff of a bidder with
valuation b is equal to b. A reseller with value w € [a, b], who sets her reserve
price optimally to r(w), does not sell the object if all A bidders have valu-

r(w)"

ations less than r(w), which happens with probability F; O Accordingly,

Pr@)”

ryr G, .

b
her continuation payoff is b — |
w

Lemma 2 Consider bidder ¢ who has a higher value than her participation
cutoff. Suppose that all bidders except this bidder are following the entry and
bidding strategies in (9) and (10). Conditional on participation in the initial
auction, it is optimal for bidder i to bid according to (9) and (10).

Proof

e Step 1: Bidding higher than the adjusted values in (9) or (10) is not a
profitable deviation.

Suppose that bidder 7 bids higher than her adjusted value given in (9) or
(10). Overbidding will affect this bidder’s payoff only in the case that she
makes the highest bid and there exists other bidder(s) whose bids are higher
than the adjusted value of i. Let j be the highest-value bidder among them
and let w be the value of bidder j. Bidder ¢ acquires the good in the initial
auction and pays the (adjusted) value of bidder j. Consider the resale stage.
Bidder ¢ only knows that she is the winner of the initial auction. In order to
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construct an upper bound on the resale payoft of bidder 7, suppose that bidder
i also learns the identity and the bid (thus, the valuation) of bidder j after the
initial auction and is allowed to use this information when designing the resale
auction. If w > b then bidder 7’s optimal resale mechanism is selling the good
to bidder j at price w, which brings the same resale revenue to bidder ¢ as she
paid in the initial auction. If w < b then both bidder ¢ and bidder ;7 must be
low-cutoff bidders. In this case, bidder i’s optimal resale mechanism consists
of two steps. First, she will try to resell the good to bidders other than bidder
J using an optimal auction with reserve price r (w). If she cannot sell the good
in the first step then she can sell it to bidder j at price w. This procedure
yields an expected payoff exactly equal to [ (w), which is the adjusted value
of bidder j and the price that bidder ¢ paid in the initial auction. This rules
out any positive profit from overbidding.

e Step 2: For a low-cutoff bidder with valuation v € [a, b], bidding lower
than the adjusted value in (9) is not a profitable deviation.

Suppose that bidder ¢ with valuation v € [a, b] bids lower than her adjusted

value 3 (v) =b— f b FF ((; ,3 dz. Underbidding is payoff relevant for this bidder
when all high-cutoff bidders have values below b and the highest bidder’s bid
is lower than the adjusted value of i. Let j be the highest bidder and let w be
the value of bidder j. By bidding according to (9), bidder i could have bought

the good in the initial auction at price [ (w) and her expected continuation

profit would have been g (v) —  (w) = f;j FF @)" gr > 0. By underbidding

in the initial auction, bidder ¢ can only acqu1re the good at the resale stage
if v > r(w) and all the high-cutoff bidders have values below v. Conditional
probability of the latter event is F (v)" /F (b)". Using the envelope theorem,
the expected resale-stage payoff for the low-cutoff bidder with value v > r (w)

will be f;}(w) o) () > x for € [a,b], this is lower than her

equilibrium payoff 5 (v) — 8 (w) = f;’ FF o dm showing that underbidding is

not a profitable deviation for bidder .

e Step 3: For any bidder with valuation v > b, bidding less than v is not a
profitable deviation.

Suppose that bidder ¢ with valuation v > b bids lower than v. Underbidding
is payoff-relevant for this bidder only if v is the highest realized value and the
highest bidder’s bid is higher than i’s bid. Let j be the highest bidder and
let w be the value of bidder j. If w is higher than b, underbidding is not
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a profitable deviation: By bidding less than w, bidder ¢ loses the good and
receives zero payoff, whereas by bidding her value she gets the object and
obtains the strictly positive payoff v — w. If w is lower than b, this implies
that the highest bid belongs to a low-cutoff bidder. In this case, underbidding
does not effect the probability of receiving the good: if bidder ¢ follows the
equilibrium bidding strategy, she receives the good in the initial auction; if she
underbids, she receives it in the resale stage. The price to pay in the initial
auction is 3 (w) = b — f; %;;)h)hdx. The price to pay in the resale depends
on the reserve price r (w) and the bids of the other bidders participating in
resale. Notice that all these other resale-stage bidders are high-cutoff bidders
and they have valuations in [a,b]. Depending on whether bidder i is a low or
high-cutoff bidder, there may be h or h—1 other potential resale stage bidders.

Therefore, the lower bound on the expected resale price is

[P E@T , [PEe@)T
a(b,r(w))—b—/r(w)F(b)h1dm—b /w F ) ' (z) dx.

It remains to show that this last expression is higher than [ (w), that is,

"F(r(2)" E(r ()"

Multiplying both sides with F (b)" and rearranging gives
b
[ F@) F @) - PO @) de 20

We can establish that
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where the third equality follows from (7). Therefore,

b
/ F(r(@)" " [F(r(2) = F (b) 7' ()] dz

w
b

— [ Fe@) e - @) F (@)
n / Ir (z) — 2] F (r (2)) dF (r ()"
= F(r () [ (w) —w] + / Ir(z) — 2] F (r (2)) dF (r (2))"". (19)

w

This last figure is non-negative since r (x) > « for all z € [a,b] and F (r ()"
is non-decreasing in x. m

Lemma 3 Suppose that all bidders except one are following their equilibrium
strategies. For the remaining bidder, the payoff differential between partici-
pation in the initial auction and staying out of it is weakly increasing in her
valuation.

Proof It follows from the revenue equivalence theorem that a bidder’s
“non-participation” payoff is continuous in her valuation and its derivative is
equal to the probability that this bidder will acquire the auctioned object dur-
ing the resale phase. Her “participation payoff” is continuous in her valuation
as well and its derivative is equal to the probability that she receives the good
and keeps it after the end of the initial auction and the resale phase. To con-
clude that the payoff differential is weakly increasing in valuation, it will be
sufficient to show that probability of acquiring the good is at least as large for
all bidder valuations if the bidder were to participate in the initial auction.

Suppose that the bidder’s valuation is v. If this bidder stays out of the
initial auction, she will acquire the object only when the valuations of all
the high-cutoff bidders (excluding the bidder in question, in case that she is a
high-cutoff bidder) are lower than v and the valuation of the highest low-cutoff
bidder (excluding the bidder in question) is between a and 7! (v). Now notice
that, when the valuations of the other bidders satisfy this condition, the same
bidder would have acquired the object by participating in the initial auction
(either by overbidding the highest low-cutoff bidder or at the resale phase) as
well.2” This proves that entering in the initial auction does not decrease the
probability of acquiring the object for any valuation. m

2TThis is analogous to the property (8) in the resale auction discussed in Garratt, Troger,
and Zheng (2009).
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Proof of Remark 2
i) 7 (a,b) is increasing in a and b for a > 0.
Using (9) and (11), we have

) = F @)™ F 050 = @ P [ S
Let a > 0. 7, (a,b) is increasing in a, since 5(a) is increasing in a.
b
aﬂ'L (a,b) . 1— 1 (97'(33')
20 = hF(a) /F (x)) 2% dx]

= hF(a) " fO)[F®)" b~ [ F(r@)" ' (z)da]

> hF(a) " fO)F®)" 0~ [ F(0)" da]

S A ®

= hF ()" fFO)F )" a>0,

where the second equality follows from f (r (x)) 87:9(; ) = f(b)r' (x) (using the
implicit function theorem for (7)), and the inequality follows from F'(b) >
F(r(z)) and v (x) € (0,1).

ii) 7y (a,b) is increasing in a.

From (14),

aﬂ'H (a, b)
da

Using (8), (9), and a change of variables (z — r(z)),

=1F (a)"" f(a) [F (0)" " b — a(b,r(a) + Bla)].

aﬂ'H (CL, b)
da

= F(a) " fa)F®)" " a>0,

where the inequality follows from F'(b) > F' (r (z)) and 7’ (z) € (0,1). =
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Proof of Proposition 2 (Existence of Asymmetric Equilibria with
Resale)
The proof will use the following lemma.

Lemma 4 If0 < a < b then 7y, (a,b) > 71, (a,b) and 7y (a,b) < 7y (a,b).
Proof Recall that ((1),(2),(11),(14))
7r(a,b) = F(a)""Fb)"
7 (a,b) = F(a)"'F
b
fn(ad) = FO7(F@'b+ [ 0 w)dF )

b

y(a,b) = F ()" [F (a)lb+/[04 (b7 (w)) = B (w)] dF (w)'].

a

Let 0 < a < b. The first inequality follows from /3 (a) > a. The second
inequality follows from b > « (b, r (w)) and S (w) > w for w € [a,b). m

Proof of Proposition 2. For all b € [v,, 1], define

Joa:imp(a,b)=c if 7, (0,b) <c
() = { 0 otherwise '

Notice that ® (b) is continuously differentiable, strictly decreasing whenever it
takes positive values, and that ® (vs) = v,. For all b € [vg, 1], also define

g (0) =7y (®(b),b) —c.

This last function is also continuously differentiable with g (vs) = 0. The resale
equilibrium conditions are satisfied (with b as the high cutoff and @ (b) as the
low cutoff) if and only if g (b) < 0, with equality if b < 1.

Recall that 7, (a*,b*) = c. Since function 7, (a,b) is increasing in a and is
larger than 7, (a,b) for 0 < a < b, it must be that ® (b*) < a*. Consider

g(") =7y (P(D*),0") —c<my(a",b") —c <7y (a"b*)—c<O0.

The first inequality follows from monotonicity of 7y in its first argument, and
the second one from 7y (a,b) < 7y (a,b) for 0 < a < b. Finally, g (b*) < 0
implies the existence of b** > b* (with strict inequality if b* < 1) such that
g (™) < 0 (with equality if b** < 1). Accordingly, there exists an equilibrium
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where h bidders use cutoff b** and [ bidders use cutoff a™* = & (b**). To
complete the proof, notice that a** < & (b*) < a*. =

Proof of Proposition 3 (Welfare under Resale)
The proof of the proposition will follow from these lemmas:

Lemma 5 % < —If(a)[rL (a,b) — ¢].
Proof

dS (a,b)
da

b

= —[F(r(a)"a+ /( )vdF (W)"LF (a)'™" f (a) +1f (a) ¢

U (@) [F (r(a)" F(a) " at / F(a) ™ vdF ()" — d.

r(a)

b
Recalling that 7, (a,b) = F (a)' " F (0)" 8 (a) = F (a)' "' F ()" [b—[ %f);)hdx],
we need to show N

Fla) ' [F)"b—F (r(a)a— /F(r (2))" da] < F (a)"" /( wF ()" or

b b
F(a)™" / 2dF (r (2))" < F ()™ / r (2) dF (r (2))"

a

where the left hand side is obtained by using integration by parts and the right
hand side a change of variables. The inequality holds since = < r () for all
r<b m

Lemma 6 If% is weakly increasing inv, then % > —hf(b)[ry (a,b) — ¢|.

Proof

e Step 1: If %(v”)) is weakly increasing in v, then F' (r (w))—F (b) ' (w) > 0
for all w < b, and the inequality is strict if w > 0.

Total differentiation of (7) reveals that

r(w) = Iy




where r equals the optimal reserve price for valuation w. So we need to show

Fe) < 20 opeyrirey - ren L

' (w) fr)?
PO)=F(0) < P+ FO-F0) 15 0)
which is identical to
[1—f'5i“zj§”uF<b>—F<r>] < F()
PO - P F), )
LU =L ) < F .

The last line follows from (7). Recall that 7 —w > 0. If f (r)* < f'(r) F (r),
then the left hand side is at most zero and the inequality is satisfied. Otherwise,

showing
2
[f(T) — S () F(r)
,
f(r)
is sufficient for the proof. This last inequality is identical to F'(r) f (r) +

f'(r)F (ryr — f(r)*r > 0. The left hand side is equal to the numerator of

the derivative of "L )) with respect to r. The denominator of the derivative is

F(r)®> > 0. Therefore if f( i
b, then F' (r (w)) — F (b) ' (w) > 0, concluding the proof of this first step.

e Step 2: If F'(r (w)) — F (b)r' (w) > 0 for all w € [0,b], then —85(5)‘2717) >
—hf(b) [rm (a,b) — .

dS (a,b)

o = ~HE )T 0) +hf (b)e

b
o

hbF ()71 f (b) + hwF (r (w))" ™! f (r (w)) 252
—hr (w) F (r ()" £ (r (w)) 2

b
= —hfO)[F®)" " F(a)b- C+/ (r (w) —w) F (r (w)"" ' (w)

where the last equality follows from f (r (z)) 242 = f(b)+' () (using the

ob
implicit function theorem for (7)).
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Recall that

ri (a,h) = f%aYPWbV1b+ffwf{/fa<ar<w»-—6<wndF<wV

b
— F(ayF(b)“HFL(b) / / F(r (@) [F(r(z) — F () ()] dedF (w)" .

We need to show that (20) is larger than or equal to

dS (a,b) i h—1 ! ’ h—1 l
C—T/hf b)y=F )" F(a)b+ | (r(w)—w)F (r(w))" ' (w)dF (w) .
The term F (b)" ™" F (a)' b appears on both sides of this inequality and can-
cels out. Using equality (19) that we derived for the proof of Lemma 2, the
inequality boils down to

1 / b b - |
W/ [F (r(w))" r (w) = w] +/ [r () — 2] F (r (z)) dF (r ()" | dF (w)

w
a

> [ )= w) F ) ) dF )

Since the value of integral fulj [r(z) — 2] F (r (2)) dF (r (z))"" is non-negative,
showing the below inequality would be sufficient for the result:

1 b
i | P @) ) =) dP @) > [ ) =) F ) ) dF )

a
which can be rewritten as
b

/[F (r (w)) = F (b)r' (w)] F (r (w))" ™" (r () = w) dF (w)" > 0.
This inequality holds since all terms in the integrand are positive for all w €
(a,b) under the hypothesis of the lemma. m

Proof of Proposition 3. We know from the proof of the Propo-
sition 2 that ¢ (b*) < 0 and there exists b which satisfies the resale equi-
librium conditions with ® (b). Now consider the smallest such value of b:
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b* = min{b > b*: g (b) <0, with equality if b < 1}. To see that surplus is
higher under cutoffs b** and ® (b**), write S (® (b**),b**) — S (a*,b*) as

B(b*) o b* b**
/a* 8S<aa7b)da+/b (85(@8?),6)_I_(?S(Q;((lb),b)q),(b))db
-

> [ @)~ ddat [ —hf 0 @0).0) - dd

(0*) b

*

—I—/b —1f (a) [rL (P (b),b) — ] D" (D) db.

*

The inequality above follows from the previous two lemmas and that &' (b) < 0.
Moreover, mr, (a,0*) > 7 (P (b*),0*) = ¢ for all a € (P (b*),a*], establishing
that the first integral above is strictly positive. The last integral is non-negative
since 7wy (®(b),b) > c¢. Finally, the term [ry (®(b),b) — ] in the second
integral equals to ¢ (b), which takes non-positive values for b € [b*, b**] by
definition of 0™*. =
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