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Abstract

We study equilibria in second-price auctions where bidders are independently and pri-

vately informed about both their values and participation costs, and where the joint dis-

tributions of these values and costs across bidders are not necessarily identical. We show

that there always exists an equilibrium in this general setting with two dimensional types of

ex ante heterogeneous bidders. When bidders are ex ante homogeneous, there is a unique

symmetric equilibrium, but asymmetric equilibria may also exist. We provide conditions

under which the equilibrium is unique (not only among symmetric ones). We find that the

marginal density of participation costs and the concentration of values matter for the unique-

ness. The presence of private information on participation costs tends to reduce multiplicity

of participation equilibria, although multiplicity still persists.
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1 Introduction

In many auction markets, bidders often incur participation costs. For instance, sellers may

charge an entry fee, or require registration or pre-qualification for the auction. It may be costly

for bidders to prepare bids, travel to the auction site, or acquire information about the auction

rules and the values of the object to be auctioned. In general, bidders also incur opportunity

costs for participating in auctions. Moreover, bidders may be privately informed about their

participation costs.1 In the presence of such participation costs, not all potential bidders would

be willing to participate. Therefore, when analyzing bidders’ behavior in auctions, participation

decisions, along with bidding strategies should be endogenously determined.

In this paper, we study existence and uniqueness of equilibria in second-price auctions when

bidders are independently and privately informed about their participation costs as well as their

valuations, and the joint distributions of these values and costs across bidders are not necessarily

identical.2 In other words, we allow for ex ante heterogeneous bidders with two-dimensional

types.

Since, conditional on participating, each bidder cannot do better than bidding his value in a

second-price auction, we naturally restrict our attention to (Bayesian-Nash) equilibria in cutoff

strategies: a bidder participates in the auction if and only if his cost is below a certain cutoff (as

a function of his private value.) To characterize the equilibrium in cutoff strategies we first con-

vert the equilibrium conditions for a profile of cutoff strategies to a system of integral equations.

We then use the Schauder-Tychonoff fixed-point theorem to show that there exists a solution

to the system of integral equations. This establishes the existence of equilibrium in a general

environment, which includes models in previous studies as special cases. Next, we study the

uniqueness issue. When bidders are ex ante symmetric (they have the same joint distribution

over two-dimensional types), we show that there is a unique symmetric equilibrium, i.e., each

bidder uses the same cutoff strategy. We also show that when there are two heterogeneous

bidders, if each bidder’s value and participation cost are independently distributed (not neces-

sarily identical across bidders), the equilibrium is unique under a restriction on the marginal

distributions of participation costs. Our results show that when the marginal density of costs

1Several related terms have been used in the literature, including participation cost, entry fee, entry cost, or

opportunity cost. Since we only study equilibrium behavior, we do not need to distinguish between (bidder)

participation costs and entry fees (charged by the seller.)
2Our analysis in this paper applies to standard English auctions or ascending-price auctions. In this scenario,

bidders who participate will stay in the auction until the price reaches their valuations and the participation

conditions are identical to those in second-price auctions, which we analyze in this paper.
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is uniformly bounded, relative to the expected valuations, the equilibrium is unique. This hap-

pens when the participation costs follow more dispersed distributions and the valuations are

concentrated more on low values.

Finally, we identify conditions under which (a specific type of) asymmetric equilibria exist in

a symmetric environment. We find that the presence of private information about participation

costs tends to reduce the multiplicity of participation equilibria, although the multiplicity still

persists.

Green and Laffont (1984) is the first to study equilibrium bidding behavior in a second-price

auction where bidders are privately informed of their values and participation costs. Assuming

the bidders’ values and participation costs are independently and jointly uniformly distributed,

Green and Laffont (1984) show the existence and uniqueness of a symmetric equilibrium in cutoff

strategies.

Gal et al. (2007) study second-price procurement auctions with two-dimensional types that

are independently and identically distributed with continuously differentiable density. They

show the existence and uniqueness of the symmetric equilibrium, and then, restricting attention

to the symmetric equilibrium, they prove that the buyer benefits from partially reimbursing

the bidders for the costs of preparing their bids. We make several contributions relative to Gal

et al. (2007). First, we establish the existence of equilibria for general distributions, not only

for the symmetric cases with continuously differentiable density. Second, we identify sufficient

conditions for the uniqueness of the equilibrium, not just the uniqueness of the symmetric

equilibrium in the symmetric model. Third, we illustrate that the uniqueness is not easily

guaranteed, but rather that asymmetric equilibria (and hence multiple equilibria) can easily

arise even when bidders are ex ante symmetric. This suggests that one needs to be cautious

when making policy recomendations based on the symmetric equilibrium.3

When players have multi-dimensional types, the study of equilibrium behavior in auctions is

usually challenging, due to the lack of a natural order on types. In the case of multi-dimensional

types of bidders, determining the equilibrium cutoff strategies can be complex, even in the case

of second-price auctions. The literature on auctions with participation costs has mostly focused

on single-dimensional types, where either the valuations or the participation costs are commonly

3In another recent paper, Xu et al. (2013) study how resale affects both the entry decision and bidding behavior

in a second-price auction model with two-dimensional types of bidders and binomially distributed entry costs,

focusing on the symmetric equilibrium.
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known.4,5 In a related paper to this one, Tan and Yilankaya (2006) characterize the equilibrium

structure in second-price auctions when bidders’ values are private information and participation

costs are common knowledge and identical across bidders. They find conditions under which the

equilibrium is unique and symmetric, as well as conditions under which, there exist asymmetric

equilibria, despite bidders being ex ante symmetric. The existence and structure of multiple

equilibria can have important implications for policy design and empirical studies on auctions.

The remainder of the paper proceeds as follows. We describe our model in Section 2 and

establish existence in Section 3. The uniqueness is addressed in Section 4. We discuss multiple

equilibria in Section 5 and provide some concluding remarks in Section 6. All of the proofs are

presented in the Appendix.

2 The Setup

We consider an independent value environment with one seller and n risk-neutral buyers. Let

N = {1, 2, · · · , n}. The seller has an indivisible object which he values at zero. The auction

format is the sealed-bid second-price auction (see Vickrey, 1961). In order to submit a bid, bidder

i must incur a participation cost ci. Buyer i’s value for the object, vi, and his participation cost

ci are independently drawn from the distribution function Ki(vi, ci), with support [0, 1]× [0, 1].6

Let ki(vi, ci) ≥ 0 be the corresponding density function.7,8

Bidders know their own values and participation costs when they make their independent

participation decisions. If bidder i decides to participate in the auction, he incurs a participation

cost ci and submits a bid. The bidder with the highest bid wins the object and pays the amount

of the second highest bid. If there is only one participant in the auction, he wins the object and

pays 0. If there is a tie in the bidding, the allocation is determined by a fair lottery.

4The literature starts with Samuelson (1985), and Stegeman (1996) and Campbell (1998) are among the early

contributors. See Kaplan and Sela (2006), Tan and Yilankaya (2006), Celik and Yilankaya (2009), Lu (2009), Cao

and Tian (2010), and Cao and Tian (2013) for some of the more recent contributions.
5There is another strand of literature where bidders learn their values after incurring their (commonly known)

participation costs, see, for example, McAfee and McMillan (1987), Tan (1992), and Levin and Smith (1994).
6The support for valuations is set to be [0, 1] by normalization. Bidders with participation costs higher than

1 will not participate in the auction and such a type of bidder is of no practical interest. If the upper bounds

of the supports for the participation costs are higher than 1, the above distributions on the participation costs

should be interpreted as the truncated distributions of the original distributions on [0, 1]. All the derivations in

the paper hold with this interpretation.
7We will study the special case where vi and ci are independently distributed in Sections 4 and 5.
8When there are atoms in the distribution, ki(vi, ci) can incorporate Dirac delta functions to handle the infinite

density.
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In this second-price auction with participation costs, without loss of generality, the action

set for any type of bidder is: {No}∪ [0, 1], where “No” denotes not participating in the auction.

Bidder i incurs the participation cost if and only if his action is different from “No”. Bidders are

risk neutral and they compare their expected payoffs from participating with their participation

costs to decide whether or not to participate. If the expected payoff from participating is less

than the cost, they will not participate. Otherwise, they will participate and submit bids.

Given the (Bayesian-Nash) equilibrium strategies of all the other bidders, a bidder’s expected

payoff from participating in the auction is a non-decreasing function of his valuation. Putting it

differently, the maximum one would like to pay to participate in an auction is a non-decreasing

function of one’s valuation. Therefore, we focus on Bayesian-Nash equilibria in which each bidder

uses a cutoff strategy denoted by c∗i (vi), i.e., one bids his true valuation if his participation cost

is less than some cutoff and does not participate otherwise.9 Note that if a bidder finds that

participating in this second-price auction is optimal, he cannot do better than bidding his true

valuation. All of our results on uniqueness or multiplicity on equilibria should be interpreted

accordingly.10

An equilibrium strategy of each bidder i is then determined by the expected payoff of par-

ticipating in the auction c∗i (vi) when his value is vi.
11 We can interpret c∗i (vi) as the maximal

amount bidder i would like to pay to participate in the auction when his value is vi. Let bi(vi, ci)

denote bidder i’s strategy. Then the bidding function can be characterized by

bi(vi, ci) =

 vi if 0 ≤ ci ≤ c∗i (vi)

No otherwise.

At equilibrium, bidder i with value vi is indifferent between participating and not participating

if his cost is c∗i (vi).
12

9Lu and Sun (2007) show that, for any auction mechanism with participation costs, the participating and

nonparticipating types of bidders are divided by a nondecreasing and equicontinuous shutdown curve.
10It is well-known that there are other (dominated) equilibria of second price auctions when there is no cost of

participation (see Blume and Heidhues (2004) for the characterization of all equilibria). In this paper we restrict

to cutoff equilibria, where all participating bidders bid their valuations.
11In equilibrium, c∗i (vi) depends on the distributions of all bidders’ valuations and participation costs.
12The description of the equilibria can be slightly different under different informational structures on Ki(vi, ci).

For example, when vi is private information and ci is exogenously fixed for all bidders, Ki(vi, ci) = Fi(vi) (see

Campbell 1998; Stegeman 1996; Tan and Yilankaya 2006; and Cao and Tian 2013) and the equilibrium is described

by a valuation cutoff v∗i for each bidder i such that bidder i submits a bid whenever vi ≥ v∗i .
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3 Existence

Suppose, provisionally, there exists an equilibrium in which each bidder i uses c∗i (vi) as his

participation strategy. Then, bidder i with value vi = v will participate in the auction (and

submit v) if and only if ci ≤ c∗i (v). If we equate not entering with bidding zero, we can then

think of the density function of submitting the bid v as

fc∗i (v)(v) =

∫ c∗i (v)

0
ki(v, ci)dci.

Let Fc∗i (v)(v) be the corresponding cumulative probability function of fc∗i (v)(v). There is a

mass at v = 0 for Fc∗i (v)(v), with Fc∗i (v)(0) being the probability that bidder i does not submit a

bid. For each bidder i, let the maximal bid of the other bidders be mi. Since each bidder bids

his true valuation, he can win the object whenever mi < vi. Note that, if mi > 0, at least one

of the other bidders participates in the auction. If mi = 0, no other bidder participates.

The payoff of participating in the auction for bidder i with value vi = v is given by∫ v

0
(v −mi)d

∏
j 6=i

Fc∗j (mi),

and thus the zero expected net-payoff condition for bidder i to participate in the auction when

his valuation is v requires that

c∗i (v) =

∫ v

0
(v −mi)d

∏
j 6=i

Fc∗j (mi). (1)

Following some algebraic derivations, we have

Lemma 1 For all i ∈ N ,

c∗i (v) =

∫ v

0

∏
j 6=i

[1−
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi. (2)

If c∗i (v) exists, from (1), it is increasing and therefore continuously differentiable. Taking the

derivative of (2) with respect to v, we have

c∗i
′(v) =

∏
j 6=i

[1−
∫ 1

v

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]. (3)

The above equation is a functional differential equation with the initial condition c∗i (0) = 0.

To study the existence and uniqueness of the equilibrium, we first characterize some prop-

erties of c∗i (v). These properties are used in the proofs of Theorems 1 and 2. From (1) and (3),

we have
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Lemma 2 For all i ∈ N , if it exists, c∗i (v) has the following properties:

(i) c∗i (0) = 0.

(ii) 0 ≤ c∗i (v) ≤ v.

(iii) c∗i
′(1) = 1.

(iv)
dc∗i (v)
dv ≥ 0 and

d2c∗i (v)
dv2

≥ 0.

(i) means that, when bidder i’s value for the object is 0, then the value of participating in

the auction is zero and, thus, the cost cutoff point for the bidder to enter the auction is also

zero. Then, as long as the bidder’s participation cost is greater than zero, he will not participate

in the auction.

(ii) means that a bidder will not be willing to pay more than his value to participate in the

auction.

(iii) means that, when a bidder’s value is 1, his marginal willingness to pay to enter the

auction is also 1. The intuition is that when his value for the object is 1, he will almost surely

win the object, and the marginal willingness to pay is equal to the marginal increase in the

valuation.

(iv) states that the expected payoff (from participating) is increasing and convex in valuation.

Definition 1 A cutoff curve equilibrium is an n-dimensional plane comprised of (c∗1(v), c∗2(v), · · · , c∗n(v))

that is a solution of the following equation system:

(P1)



c∗1(v) =
∫ v
0

∏
j 6=1[1−

∫ 1
m1

∫ c∗j (τ)
0 kj(τ, cj)dcjdτ ]dm1

c∗2(v) =
∫ v
0

∏
j 6=2[1−

∫ 1
m2

∫ c∗j (τ)
0 kj(τ, cj)dcjdτ ]dm2

...

c∗n(v) =
∫ v
0

∏
j 6=n[1−

∫ 1
mn

∫ c∗j (τ)
0 kj(τ, cj)dcjdτ ]dmn.

The above is an integral equation system. From (3), the derivative of c∗i (v) at v depends

not only on v itself, but also on c∗j (v) with j 6= i, which increases the difficulty of studying the

existence of equilibrium.

Note that from Lemma 2, the right-hand side of (P1) defines a mapping of (c∗1(v), c∗2(v), · · · , c∗n(v))

from a space to itself. In the Appendix, we show that this space is a compact convex nonempty

subset of a locally convex topological space and the mapping is continuous. Then we establish

the existence of equilibrium using the Schauder-Tychonoff fixed-point theorem, which states that

any continuous mapping from a nonempty compact convex subset of a locally convex topological

space to itself has a fixed point. We have the following result on the existence of equilibrium

(c∗1(v), c∗2(v), · · · , c∗n(v)):
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Theorem 1 (Existence of Equilibria) The integral equation system (P1) has at least one

solution (c∗1(v), c∗2(v), · · · , c∗n(v)), i.e., there is always an equilibrium in which bidder i uses the

cutoff strategy c∗i (v).

4 Uniqueness

To investigate the uniqueness of equilibrium, we first consider the case where all bidders are ex

ante homogeneous in the sense that they have the same joint distribution function of valuations

and participation costs, and we focus on the symmetric equilibrium in which all bidders use the

same cutoff curve c∗(v).

(P1) can be rewritten as

c∗(v) =

∫ v

0
[1−

∫ 1

m

∫ c∗(τ)

0
k(τ, c)dcdτ ]n−1dm, (4)

and correspondingly we have

c∗′(v) = [1−
∫ 1

v

∫ c∗(τ)

0
k(τ, c)dcdτ ]n−1, c∗(0) = 0. (5)

We then have the following result.

Theorem 2 (Uniqueness of the Symmetric Equilibrium) Suppose that all bidders have

the same distribution function K(v, c). There is a unique symmetric equilibrium where each

bidder uses the same cutoff strategy.

Gal et al. (2007) provide a similar result on the uniqueness of the symmetric equilibrium. Our

uniqueness result is for general joint distributions while their result is based on the continuously

differentiable density. In addition, their proof involves an ordinary differential equation with two

mixed boundary conditions, which is a non-trivial mathematical problem and requires a careful

treatment. Our proof avoids this difficulty by way of contradiction.13

Note that Theorem 2 only shows the uniqueness of the symmetric equilibrium when bidders

are ex ante homogeneous. It does not exclude the possible existence of asymmetric equilibria.

In the case of uni-dimensional types, as shown by Stegeman (1996), Campbell (1998), Tan and

Yilankaya (2006), and Kaplan and Sela (2006), there may exist asymmetric equilibria where

ex ante homogeneous bidders use different cutoff strategies. As such, the uniqueness of the

13Uniqueness of the symmetric equilibrium has been addressed in the literature for the special cases where either

costs (see Campbell 1998 and Tan and Yilankaya 2006) or valuations (see Kaplan and Sela 2006) are commonly

known. Laffont and Green (1984) investigated the existence and uniqueness of the symmetric equilibrium in a

symmetric model where valuations and participation costs are uniformly distributed.
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equilibrium cannot generally be guaranteed, which we will address in the next section. How-

ever, we show uniqueness in the case where the bidders’ valuations and costs are independently

distributed with mild restrictions.

For the rest of the paper, we consider the case where there are two bidders and costs and val-

uations are independently distributed. Let Ki(vi, ci) = Fi(vi)Gi(ci) and ki(vi, ci) = fi(vi)gi(ci),

where Fi(vi) and Gi(ci) are the cumulative distribution functions of bidder i’s valuation and

participation cost, and fi(vi) and gi(ci) are the corresponding density functions, i = 1, 2. In this

case, bidder i with value vi = v will submit bid v with probability Gi(c
∗
i (v)) and stay out with

probability 1−Gi(c∗i (v)). Correspondingly, we have

c∗i (v) =

∫ v

0
[1−

∫ 1

mi

Gj(cj(τ))fj(τ)dτ ]dmi,

and

c∗i
′(v) = [1−

∫ 1

v
Gj(c

∗
j (τ))fj(τ)dτ ]

for i 6= j.

Thus, when vi and ci are independent, the equilibrium (c∗1(v), c∗2(v)) is a solution of the

following integral equation system:

(P2)

 c∗1(v) =
∫ v
0 [1−

∫ 1
mG2(c

∗
2(τ))f2(τ)dτ ]dm

c∗2(v) =
∫ v
0 [1−

∫ 1
mG1(c

∗
1(τ))f1(τ)dτ ]dm.

Focusing on the case of two bidders and applying the Contraction Mapping Theorem to (P2),

we have the following result on uniqueness.

Proposition 1 (Uniqueness of Equilibrium) If n = 2 and if for i = 1, 2, (i) Ki(vi, ci) =

Fi(vi)Gi(ci), (ii) Gi(ci) is continuous on [0, 1] and differentiable on (0, 1), and (iii) sup[0,1] gi(ci) <

1
E(vi)

, then the equilibrium is unique.

The condition that Gi(ci) is continuous on [0, 1] and differentiable on (0, 1) is set for applying

the Mean Value Theorem on Gi(·). The assumption that the marginal density of the partici-

pation costs is uniformly bounded by 1
E(vi)

, the inverse of the expected value of the valuation,

is used to apply the Contraction Mapping Theorem. These conditions can be easily satisfied.

For instance, when participation costs are uniformly distributed on [0, 1] for both bidders, the

supremum of the density for participation costs is 1, i.e., sup[0,1] gi(ci) = 1, and clearly E(vi) < 1

for any Fi(·) on [0, 1]. Thus, in this case, independent of the distribution of the valuations, the

equilibrium is unique. Loosely speaking, sup[0,1] gi(ci) <
1

E(vi)
holds when participation costs

are more dispersed and the valuations are more concentrated on the low values.
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Remark 1 (i) Proposition 1 also holds when the support of ci is a subset of [0, 1]

with a slightly modified proof, as we discuss in the Appendix.

(ii) For n ≥ 3, there are more product terms inside the first integral on the right-

hand side of (P2), which makes the application of the Mean Value Theorem less

tractable. The same difficulty applies for the case of correlated distributions.

When bidders are ex ante homogeneous, the unique equilibrium is necessarily symmetric. We

now provide the explicit solution of the unique equilibrium when the valuations and participation

costs are independently and uniformly distributed on [0, 1], the case studied by Laffont and Green

(1984).14

Example 1 Suppose Gi(c) and Fi(v) are both uniformly distributed on [0, 1]. At equilibrium

we have  c∗1
′(v) = 1−

∫ 1
v c
∗
2(τ)dτ,

c∗2
′(v) = 1−

∫ 1
v c
∗
1(τ)dτ.

Then c∗1
′′(v) = c∗2(v) and c∗2

′′(v) = c∗1(v). Thus we have c∗1
(4)(v) = c∗1(v) and c∗2

(4)(v) = c∗2(v)

with c∗1(0) = 0, c∗1
′(1) = 1, c∗2(0) = 0 and c∗2

′(1) = 1. One can check that the only equilibrium is

c∗1(v) = c∗2(v) = aev − ae−v, where a = e
e2+1

.

5 Asymmetric Equilibria

In this section, we briefly discuss the multiplicity issue in a symmetric environment, again

when there are two bidders whose costs and valuations are independently distributed.15 We

provide conditions for a specific type of asymmetric equilibria: one bidder never participates

(independent of his valuation) and the other one participates (and bids his value) if and only if

v ≥ c.
14Following their proof of Lemma 3, when n = 2,

|F (λt+1(θ))− F (λt(θ))| = |
∫ θ

0

∫ 1

m

[λt(τ)− λt+1(τ)]dτdm|

≤
∫ θ

0

∫ 1

m

|λt(τ)− λt+1(τ)|dτdm < ‖λt(·)− λt+1(·)‖
∫ θ

0

dm.

Thus,

‖F (λt+1(·))− F (λt(·))‖ < ‖λt(·)− λt+1(·)‖.

The Contraction Mapping Theorem can be applied to show the uniqueness of the equilibrium without using the

claim that Laffont and Green (1984) made at the beginning of their proof. The above statement can be treated

as a special case for our proof to Proposition 1.
15See Stegeman (1996), Campbell (1998), Tan and Yilankaya (2006), Cao and Tian (2013) and Kaplan and

Sela (2006) for multiplicity when the costs or valuations are commonly known.
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We consider a special case of the general model in Section 2, in which the support of (v, c) is

[vl, vh]× [cl, ch] ⊂ [0, 1]× [0, 1].16 There is a unique equilibrium (Proposition 1, see Remark 1(i))

when sup[cl,ch]
g(c) < 1

E(v) . Note that
∫ ch
cl
g(c)dc = 1 implies sup[cl,ch]

g(c) ≥ 1
ch−cl . Therefore

the sufficient condition for uniqueness is likely to be violated when ch− cl is small or when E(v)

is large. In this case asymmetric equilibria may exist.

The expected payoff of participating in the auction is a non-decreasing function of one’s true

value. Thus, a necessary and sufficient condition for a bidder to never participate is that when

his value is vh, participating in the auction still gives him an expected payoff that is less than

the minimum participation cost, cl, given the strategies of the other bidders.

The expected payoff of bidder 2 with v2 = vh when he participates in the auction is as

follows,

R = vhF (cl) +

∫ ch

cl

[(vh − x)G(x) + vh(1−G(x))]dF (x) +

∫ vh

ch

(vh − x)dF (x).

The first term is bidder 2’s expected payoff when bidder 1’s value is less than cl (with probability

F (cl)). In this case, bidder 1 does not participate and bidder 2 will get payoff vh. The second

term is the payoff when bidder 1’s value is between cl and ch. For any v1 ∈ (cl, ch), bidder

2’s payoff is vh − v1 when bidder 1 participates and is vh when bidder 1 does not participate,

and the probabilities are G(v1) and 1−G(v1), respectively. The third term is the payoff when

v1 ≥ ch and in this case bidder 1 participates for sure. For bidder 2 to never participate, we

need R < cl. Simplifying R, we have the following result.

Proposition 2 Suppose n = 2 and K(v, c) = F (v)G(c) on [vl, vh] × [cl, ch] with ch ≤ vh. A

necessary and sufficient condition for the existence of an asymmetric equilibrium in which one

bidder never participates is

vhF (ch)−
∫ ch

cl

xG(x)dF (x) +

∫ vh

ch

(vh − x)dF (x)− cl < 0. (6)

Remark 2 Condition (6) is necessarily inconsistent with sup[cl,ch]
g(c)E(v) < 1, the condition

for uniqueness in Proposition 1. To see this, note that (6) is equivalent to
∫ ch
cl
xG(x)dF (x) +∫ vh

ch
xdF (x) > vh−cl, which implies that E(v) =

∫ ch
0 xdF (x) > vh−cl. Thus sup[cl,ch]

g(c)E(v) >

sup[cl,ch]
g(c)(vh − cl) ≥ 1 since sup[cl,ch]

g(c) ≥ 1
ch−cl and ch ≤ vh.

Based on (6) we provide simpler sufficient conditions for an asymmetric equilibrium to arise.

16We can extend the supports of the distributions to be [0, 1]× [0, 1] by assigning zero density over the extended

areas [0, 1]× [0, 1] \ [vl, vh]× [cl, ch] with ch ≤ vh. Then, by Theorem 1, an equilibrium exists.
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Corollary 1 Suppose n = 2 and K(v, c) = F (v)G(c) on [vl, vh]× [cl, ch] with cl < ch < vl < vh.

A sufficient condition for the existence of an asymmetric equilibrium in which bidder 1 always

participates and bidder 2 never participates is

vh − E(v) < cl. (7)

The economic intuition for Corollary 1 is as follows. If bidder 2 never participates, then bidder

1 will always participate (his lowest possible valuation is greater than the highest possible cost).

And if bidder 1 always participates, his expected bid, and hence the expected price faced by

bidder 2, is E(v). If vh − E(v) < cl, even the highest value-lowest cost type has no incentive

to participate, making it obvious that “bidder 1 always enters and bidder 2 never participates”

is an equilibrium. One sufficient condition for this to be true is vh − vl < cl (since E(v) ≥ vl),

which is independent of the distributions of the valuations and participation costs.

There is an important implication for Corollary 1. When participation costs are always less

than the value of the object, but the minimum participation cost is more than the range in

possible values, there always exists one equilibrium in which one bidder always abstains. That

may be an undesirable outcome in terms of revenue and efficiency. This does not happen when

participation costs are more dispersed.

The second simple condition for multiplicity involves a strictly convex F (·) on [0, 1] as follows.

Corollary 2 Suppose n = 2, K(v, c) = F (v)G(c) on [vl, vh]× [cl, ch], and F (·) is strictly convex.

There exists a c ∈ (0, 1) such that, when ch > c and ch − cl is sufficiently small, there exists an

asymmetric equilibrium in which one bidder never participates and the other bidder participates

whenever v ≥ c.

In Corollary 2, the limiting case of ch = cl = c corresponds to the model in Tan and Yilankaya

(2006), where participation costs are exogenously fixed. They show that there exists an asym-

metric equilibrium when F (·) is strictly convex. In this case, F (c)+
∫ 1
c (1−x)dF (x)−c represents

the payoff of a bidder with value 1 if he participates in the auction while the other participates

whenever v ≥ c. Combining the above Corollary with the result of Tan and Yilankaya (2006), we

see that with the introduction of the private information about the participation cost, or as the

support [cl, ch] of the participation cost that includes c becomes larger, asymmetric equilibrium

still arises, as stated in Corollary 2. However, as ch − cl becomes sufficiently large such that

E(v) sup[0,1] g(c) < 1, Proposition 1 implies that asymmetric equilibria disappear. Therefore,

there is a sense in which the presence of private information about participation costs tends to

12



reduce the multiplicity of equilibria in comparison to the case of commonly known participation

costs.

Remark 3 When F (·) is concave on [0, 1], there is no equilibrium in which one bidder never

participates and the other one participates whenever his value is greater than his participation

cost, since R = F (cl) +
∫ ch
cl

[(1− x)G(x) + vh(1−G(x))]dF (x) +
∫ 1
ch

(1− x)dF (x) ≥ cl.17

Before ending this section, we would like to point out that even though our discussion is based

on two bidders, we expect that our result can be extended to the case of more than two bidders.

Specifically, when n > 2, we can find similar conditions such that one bidder participates if and

only if v ≥ c while all other n − 1 bidders never participate. From the perspective of n − 1

bidders who do not participate, only one bidder who participates matters, not the n − 2 other

bidders that never participate, as if they do not exist, which is the case of n = 2. There may be

other types of asymmetric equilibria than we consider, which calls for future work.

6 Conclusion

We study the existence and uniqueness of equilibrium in second-price auctions when bidders’

values and participation costs are both private information. We show that under general dis-

tribution functions, there always exists an equilibrium in which each bidder uses a cutoff strat-

egy. When bidders are ex ante homogeneous, there is a unique symmetric equilibrium. When

there are two heterogeneous bidders, we provide a sufficient condition for the uniqueness of the

equilibrium. Future research may be focused on identifying sufficient conditions to guarantee

uniqueness of equilibrium in general environments.

We also show that multiple equilibria can easily arise. Specifically, in the symmetric model

with two bidders, we identify sufficient conditions under which asymmetric equilibria exist. The

multiplicity of equilibria has important consequences for both efficiency and seller’s revenue. For

instance, asymmetric equilibria are ex post inefficient: A bidder may obtain the object he bids

for even when there is another bidder with a higher valuation and a lower cost, who nevertheless

stays out of the auction. Moreover, revenue-maximizing and ex-ante efficient auctions may be

asymmetric even in a symmetric environment. This is suggested by Celik and Yilankaya (2009),

17Note that since vl = 0 < cl, the condition in Corollary 1 is violated. Moreover, there cannot be an equilibrium

in which one bidder always participates. If F (·) is concave on a support with a positive lower bound, this

potentially induces convexity on some interval in [0, 1], which may induce asymmetric equilibria. See Tan and

Yilankaya (2006) for more on this issue.
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who provide (separate) sufficient conditions for these to happen when the participation cost is

commonly known.18 It would be interesting to study revenue-maximizing or efficient auctions

when both values and participation costs are bidders’ private information.

18Also see Stegeman (1996) for an example of an asymmetric ex-ante efficient auction.
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Appendix

Proof of Lemma 1:

If mi = 0, none of the other bidders will participate, the probability of which is

∏
j 6=i

Fc∗j (0) =
∏
j 6=i

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ.

Otherwise, at least one other bidder submits a bid. Then

∏
j 6=i

Fc∗j (mi) =
∏
j 6=i

[1−
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ].

Thus, the cutoff for individual i, i ∈ 1, 2, ...n, which is c∗i (v) =
∫ v
0 (vi −mi)d

∏
j 6=i Fc∗j (mi), can

be expressed as

c∗i (v) =

∫ v

0
(vi −mi)d

∏
j 6=i

[1−
∫ 1

mi

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ ] + v

∏
j 6=i

[

∫ 1

0

∫ 1

(c∗j (τ))
kj(τ, cj)dcjdτ ].

Integrating by parts, we have

c∗i (v) =

∫ v

0
(v −mi)d

∏
j 6=i

[1−
∫ 1

mi

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ ] + v

∏
j 6=i

[

∫ 1

0

∫ 1

(c∗j (τ))
kj(τ, cj)dcjdτ ]

= (v −mi)
∏
j 6=i

[1−
∫ 1

mi

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ ]

∣∣vi
0

+ v
∏
j 6=i

[

∫ 1

0

∫ 1

(c∗j (τ))
kj(τ, cj)dcjdτ ]

+

∫ v

0

∏
j 6=i

[1−
∫ 1

mi

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ ]dmi

= −v
∏
j 6=i

[1−
∫ 1

0

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ ] + v

∏
j 6=i

[

∫ 1

0

∫ 1

(c∗j (τ))
kj(τ, cj)dcjdτ ]

+

∫ v

0

∏
j 6=i

[1−
∫ 1

mi

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ ]dmi.

Since ∫ 1

0

∫ (c∗j (τ))

0
kj(τ, cj)dcjdτ +

∫ 1

0

∫ 1

(c∗j (τ))
kj(τ, cj)dcjdτ =

∫ 1

0

∫ 1

0
kj(τ, cj)dcjdτ = 1,

thus we have

c∗i (v) =

∫ v

0

∏
j 6=i

[1−
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi.

Proof of Lemma 2:

(i) Let v = 0 in the expression of c∗i (v), we have the result.
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(ii) Since

c∗i (v) =

∫ v

0

∏
j 6=i

[1−
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi 6

∫ v

0
dmi = v

by 0 ≤
∫ 1
mi

∫ c∗j (τ)
0 kj(τ, cj)dcjdτ ≤

∫ 1
0

∫ 1
0 kj(τ, cj)dcjdτ = 1, thus 0 ≤ c∗i (v) ≤ v.

(iii) Letting v = 1 in (3), we have the result.

(iv)

dc∗i (v)

dv
=
∏
j 6=i

[1−
∫ 1

v

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ] ≥ 0

by noting that
∫ 1
v

∫ c∗j (τ)
0 kj(τ, cj)dcjdτ ≤ 1. Then

d2c∗i (v)

dv2
=
∑
k 6=i

∏
j 6=i,j 6=k

[1−
∫ 1

v

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]

∫ c∗k(v)

0
kj(τ, cj)dcjdτ ≥ 0.

Proof of Theorem 1:

In the following, we apply the Schauder-Tychonoff Fixed-point Theorem (see T. A. Burton

(2005, p.185) ), which states that any continuous mapping from a compact convex nonempty

subset of a locally convex topological space to itself has a fixed point, to show the existence of

the equilibria.

Let hi(mi, c
∗) =

∏
j 6=i[1 −

∫ 1
mi

∫ c∗j (τ)
0 kj(τ, c)dcdτ ] with c∗ = (c∗1, · · · , c∗n). Since kj(τ, c) is

integrable over c as it is a density function, there exists a continuous function γj(τ, c) with

∂γj(τ,c)
∂c = kj(τ, c) such that

∫ c∗j (τ)
0 kj(τ, c)dc = γj(τ, c

∗
j (τ))−γj(τ, 0). Thus hi(mi, c

∗) =
∏
j 6=i[1−∫ 1

mi
[γj(τ, c

∗
j (τ))− γj(τ, 0)]dτ ], which is a continuous mapping from [0, 1]× [0, 1]n → [0, 1].

Let H(m, c∗)) = (h1(m1, c
∗)), h2(m2, c

∗)), · · · , hn(mn, c
∗)))′, which is a continuous mapping

from [0, 1]n × [0, 1]n → [0, 1]n. By Lemma 2, H is bounded above by one. Define

M = {c ∈ ϕ |: ‖c‖ ≤ 1},

where ϕ is the space of continuous functions φ defined on [0, 1]n → [0, 1]n with ‖c‖ = sup0≤v≤1 c(v).

Then by Ascoli Theorem, M is compact. M is clearly convex.

Define an operator P : M →M by

(Pc)(v) =

∫ v

0
H(s, c(.))ds.

To see that P is continuous, let φ ∈ M and let ε > 0 be given. We show that there exists an

η > 0 such that ϕ ∈M and ‖φ− ϕ‖ < η implies ‖(Pφ)(v)− (Pϕ)(v)‖ ≤ ε. Now

∣∣(Pφ)(v)− (Pϕ)(v)
∣∣ =

∣∣ ∫ v

0
[H(s, φ(.))−H(s, ϕ(.))]ds

∣∣
16



and hi is continuous, so for ε > 0, there is an η such that
∣∣φ(τ)−ϕ(τ)

∣∣ < η implies
∣∣hi(mi, φ(τ))−

hi(mi, ϕ(τ))
∣∣ < ε. Thus for ‖φ− ϕ‖ < η we have

∣∣(Pφ)(v)− (Pϕ)(v)
∣∣ =

∣∣ ∫ v

0
[H(s, φ(.))−H(s, ϕ(.))]ds

∣∣ =

∫ 1

0

∣∣H(s, φ(.))−H(s, ϕ(.))
∣∣ds ≤ ε.

Then, by Lemma 2, P is a continuous function from M to itself. Thus, by Schauder-Tychonoff

Fixed-point Theorem there exists a fixed point; i.e., a solution for the functional differential

equation system exists.

Proof of Theorem 2:

The existence of the symmetric equilibrium can be established by the Schauder-Tychonoff Fixed-

point Theorem. Here we only need to prove the uniqueness of the symmetric equilibrium.

Suppose, by way of contradiction, that we have two different symmetric equilibria x(v) and

y(v). Then we have

x′(v) = [1−
∫ 1

v

∫ x(τ)

0
k(τ, c)dcdτ ]n−1

y′(v) = [1−
∫ 1

v

∫ y(τ)

0
k(τ, c)dcdτ ]n−1.

Suppose x(1) > y(1), then by the continuity of x(v) and y(v) we can find a v∗ such that

x(v∗) = y(v∗) = c(v∗) and x(v) > y(v) for all v ∈ (v∗, 1] by noting that x(0) = y(0).

Case 1: If k(v, c) > 0 with positive probability measure on (v∗, 1) × (c(v∗), 1), then x(τ) >

y(τ) for all τ ∈ (v∗, 1] implies that∫ x(τ)

0
k(τ, c)dc >

∫ y(τ)

0
k(τ, c)dc

for τ ∈ (v∗, 1). Then we have x′(v∗) < y′(v∗) which is a contradiction to x(v) > y(v) for v > v∗.

So we have x(1) = y(1).

Now suppose there exists an interval [α, β] ⊂ [0, 1] such that x(α) = y(α) and x(β) = y(β)

while for all v ∈ (α, β), x(v) > y(v) and for all v ∈ [β, 1], x(v) = y(v), by the same logic above,

we have x(β) = y(β) and x′(v) < y′(v) for v ∈ (α, β), which is inconsistent with x(v) > y(v)

for all v ∈ (α, β). Thus we can prove that x(v) = y(v) for all v ∈ [0, 1] and so the symmetric

equilibrium is unique.

Case 2: If k(v, c) > 0 with zero probability measure on (v∗, 1) × (c(v∗), 1), then we have

x′(v) = y′(v) for all v ∈ (v∗, 1]. By x(v∗) = y(v∗) we have x(v) = y(v) for all v > v∗, which is a

contradiction to x(v) > y(v). Thus there is a unique symmetric equilibrium.

Then in both cases we prove that there is a unique symmetric equilibrium.
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Proof of Proposition 1:

Based on (P2), define a mapping

(Pc)(v) =

∫ v

0
ds−

∫ v

0

∫ 1

s

 0 f2(τ)

f1(τ) 0

 G1(c1(τ))

G2(c2(τ))

 dτds,

where c = (c1, c2)
′.

Take any x(v) = (x1(v), x2(v))′ and y(v) = (y1(v), y2(v))′ with x(v), y(v) ∈ ϕ where ϕ is the

space of monotonic increasing continuous functions defined on [0, 1]→ [0, 1]. First note that by

mean value theorem, ∀i = 1, 2,

Gi(xi(τ))−Gi(yi(τ)) = gi(x̂i(τ))(xi(τ)− yi(τ)),

where x̂i(τ) is some number between xi(τ) and yi(τ). In the following, for presentation conve-

nience, denote

h(x̂1(τ), x̂2(τ), τ) =

 0 g2(x̂2(τ))f2(τ)

g1(x̂1(τ))f1(τ) 0

 .

Then we have

|(Px)(v) − (Py)(v)| = |
∫ v

0

∫ 1

s
h(x̂1(τ), x̂2(τ), τ)

 x1(τ)− y1(τ)

x2(τ)− y2(τ)

 dτds|

≤
∫ v

0

∫ 1

s
h(x̂1(τ), x̂2(τ), τ)dτds sup

0<v≤1
|x(v)− y(v)|

≤
∫ 1

0

∫ 1

s
h(x̂1(τ), x̂2(τ), τ)dτds sup

0<v≤1
|x(v)− y(v)|

≤
∫ 1

0

 0 sup[0,1] g2(c)(1− F2(s))

sup[0,1] g1(c)(1− F1(s)) 0

 ds sup
0<v≤1

|x(v)− y(v)|.

Thus when sup[0,1] gi(c)
∫ 1
0 (1 − Fi(s))ds = sup[0,1] gi(c)E(vi) < 1, or sup[0,1] gi(c) <

1
E(vi)

by

noting that E(vi) =
∫ 1
0 sfi(s)ds =

∫ 1
0 (1−Fi(s))ds, the above mapping is a contraction, so there

exists a unique equilibrium.

We further show Proposition 1 also holds when the support of ci is a subset of [0, 1] and

the proof is slightly modified. Suppose that the support of Gi(ci) is [cl, ch] ⊂ [0, 1] and

Gi(ci) is differentiable on (cl, ch). Then, for any c1(τ) and c2(τ), if cl ≤ ci(τ) ≤ ch for

i = 1, 2, we can follow the proof above to apply the Mean Value Theorem. Otherwise, if

one of them is not in [cl, ch], an extra treatment is needed. For instance, if cl ≤ c1(τ) ≤ ch and

c2(τ) < cl, then |Gi(c1(τ)) − Gi(c2(τ))| = |Gi(c1(τ)) − Gi(cl)| ≤ sup[cl,ch]
gi(ci)|(c1(τ) − cl)| <

sup[cl,ch]
gi(ci)|(c1(τ) − c2(τ))|. Similar inequalities hold for other possible cases. Thus, if

sup[cl,ch]
gi(ci) <

1
E(vi)

for i = 1, 2, the equilibrium is unique.
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Proof of Proposition 2:

We first prove necessity. Suppose, in an asymmetric equilibrium, bidder 2 never participates,

then bidder 1 participates if and only if v1 ≥ c1 and thus we have c∗1(v1) = v1. Simplifying R,

the expected revenue of bidder 2 with v2 = vh when he participates in the auction while bidder

1 participates whenever v1 ≥ c1, we get (6) and thus necessity holds.

Next we prove sufficiency. Suppose (6) holds. Consider the strategies that bidder 2 never

participates and bidder 1 participates whenever v1 ≥ c1. Given the strategy of bidder 2, bidder

1’s best response is to participate whenever v1 ≥ c1. Given the strategy of bidder 1, since (6)

holds, the expected revenue of bidder 2 with v2 = vh is less than cl, thus the best response for

bidder 2 is never participating for any type. Thus there exists an asymmetric equilibrium in

which one bidder never participates and sufficiency satisfies.

Proof of Corollary 1:

Suppose we have an equilibrium in which bidder 1 always participates and bidder 2 never

participates. Then bidder 1 always participates is a best response to bidder 2’s strategy since

vl > ch. For bidder 2’s strategy to be a best response, we just check that (6) holds with cl < ch <

vl < vh. To see this, note that F (ch) = 0,
∫ vh
ch

(vh − x)dF (x) =
∫ vh
vl

(vh − x)dF (x) = vh − E(v)

and
∫ ch
cl
xG(x)dF (x) = 0, thus

vhF (ch)−
∫ ch

cl

xG(x)dF (x) +

∫ vh

ch

(vh − x)dF (x)− cl = vh − E(v)− cl < 0

by noting that vh − E(v) < cl.

Proof of Corollary 2:

Let λ(c) = vhF (c) +
∫ vh
c (vh − x)dF (x) − c with c ∈ [0, vh] and notice that (6) can be written

as λ(ch)−
∫ ch
cl
xG(x)dF (x) + ch − cl < 0. Note that when v is distributed on [0, 1], vh = 1, and

we have λ(c) = F (c) +
∫ 1
c (1 − x)dF (x) − c. First we prove for any strictly convex F (·) with

support [0, 1], there exists a unique c ∈ (0, 1) such that λ(c) < 0 if and only if c ∈ (c, 1). To see

this, note that from λ(c), we have λ(0) =
∫ 1
0 (1− x)dF (x) > 0, λ(1) = 0 and λ′(c) = −1 + cf(c).

When F (·) is strictly convex on [0, 1], λ(c) is a strictly convex function of c with λ(1) = 0 since

λ′′(c) = f(c) + cf ′(c) > 0. Also note that λ′(1) = f(1) − 1 > 0, by the strict convexity of λ(c)

with λ(1) = 0, there exists a unique c such that λ(c) < 0 if and only if c ∈ (c, 1). Thus we have

λ(ch) > 0 for ch ∈ (c, 1). Note that ch − cl −
∫ ch
cl
xG(x)dF (x) = 0 when ch = cl. By continuity,
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when ch − cl is sufficiently small,

λ(ch)−
∫ ch

cl

xG(x)dF (x) + ch − cl ≤ 0

for all ch ∈ (c, 1). Thus (6) holds with vh = 1 and an asymmetric equilibrium in which one

bidder never participates exists. The other bidder participates whenever v ≥ c.
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