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Feedback Circuits, Cycles, ogic
Topology

282 REVUE DES QUESTIONS SCIENTIFIQUES
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Fig.1 Les circuits tels qu'ils apparaissent dans lan
variables. On voit que la matrice peut comporter de
trois circuils 4 deux éléments (2-circuits) et trois
éléments diagonaux de la matrice sont des [-c
représenient une rétroaction directe d*un &lément su
sont représentés sous formes d
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Introduction
Prologue to the special issue of JTB dedicated to the memory of René
Thomas (1928-2017)" oy
A journey through biological circuits, logical puzzles and complex
dynamics ] E

Born in 1928 in PBrussels, Belgium, René Thomas studied
Biochemistry and Zoology at the Free University of Brussels [(ULB),
which remained his academic home throughout most of his amaz-
ingly diversified scientific career. The originality and quality of
Thomas research led him to various prestigious awards and hon-
ours, including his election at the Royal Academy of Science of
Belgium (1975), the Francqui Prize {1975), the FNRS Quinquennal
Prize (1981-85), and the Colden Medal of the French Academy of
Sciences (19949,

Thomas" PhD work dealt with the biophysical and biochemi-
cal study of nucleic acids, under the supervision of the Belgian
embryologist Jean Brachet. He discovered that the UV absorption
of native DMA is much lower than expected from the theoretical
spectrum computed from the extinction coefficients of its compo-
nent nucleotides. Furthermore, he showed that mild treatments,
such as lower or higher pH, higher temperature, or lower ionic
strength, lead o UV absorption spectra matching theoretical pre-
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the behaviour of such networks. Hence, he looked for means to
formalise such regulatory networks and rigorously analyse their
dynamical properties. This led him to consider Boolean algebra,
which he initially learned by attending classes by Jean Florine and
interacting with Philippe YVan Ham (see his testimony below) at



* By the term circuits we refer to those sets of
terms of the Jacobian matrix of the
dynamical system whose row and column
iIndices are In circular permutation

» Circuits are positive or negative according to
the sign of the product of their terms.



Non-linear Arabesqgues
Al1ln3: (chaos with just one cubic nonlinearity)
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Frontiers:
F1: sign of the product of the (real)

eigenvalues of J changes:
sign( P)=sign( (-1)" det[J] )

F2: sign of the real / imaginary part

changes
F4: (boundary) eigenvalues change

from real to complex
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Steady state Eigenvalues of steady state
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Fig. 7. PSS of points (xz,y) satisfying z = 0 of the state-space of system (2I) as a juxtaposition for z > 0 and z < 0 due to
its point-symmetric property.






3D- Labyrinth Chaos

Thomas-Rossler Systems

dx
dt

dit
dz

dt

—bx + sin(y)
—by + sin(z)

—bz + sin(x)

—b  cos(yr) O
) —~b  cos(z)
cos(zry) 0 —b




Lyapunov exponents for the 3D Labyrinth Chaos

— = —bx +sin(y)
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b =0 : Labyrinth Chaos




Labyrinth Chaos (N=5)

x;=sin(x ) —bx;,

¢=(i mod n)+1

With n=1, ... N=2m+1
Is there a hidden “Hamiltonian”-like structure?
Implicitly assumed yes ... but




Int. J. of Bif. and Chaos, 17, 6 (2007), pp 2097-2108
“LABYRINTH CHAOS”, J. C. Sprott, K. E. Chlouverakis

Fig. 8. Six coexisting strange attractors at b = (1.203.
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Fig. 2. Bifurcation diagram (local maximuom of #) and Lya-
punov exponcints versns b H]lu'.'.'i.!ll;.', the route to chaos in
greater detail,




Int. J. of Bif. and Chaos, 17, 6 (2007), pp 2097-2108,
“LABYRINTH CHAOS”, J. C. Sprott, K.E. Chlouverakis
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whose solution is f(r,y,z) = constant. Eq

-400 X 400

Fig. 13. Probability distribution function of x for 5 x 10° initial conditions near the origin after a time of 4 x 10%. The red
curve is a Ganssian distribution with the same standard deviation and area.

Fractional Brownian Motion
Hurst Exponent ~0.61 > 1/2

100
102 | I I
X
."-ﬂ:.--
.-"FJ
102— __,.-p'-." —
0 =
-'?#
o T
o=105"1~
.-"’-'f
10— P —
.-"'f.ﬁ
a ___.-"'r
-100 e
Time 40040
; P N | | l |
Fig. _1—1. FProjection u::-f. the .ttrl_]{.fl‘u'l} onto  the o axis 3 10 102 F 103 102
showing an example of intermittency where the trajectory )
approaches the guasiperiodic region with initial conditions Fig. 15. Standard deviation of 1.5x 10° trajectories starting

(0005, 0.0%, 0.05).

near the origin versus time,



“Hyperchaos & Labyrinth Chaos: revisiting Thomas-Rdssler systems”
V. Basios , C.G. Antonopoulos, J. Theor. Biol. 460:153-159, (2019)

dx d X
d—: = —brxr + Siﬂ(yk) + _P = xk — .’L'j
dyp

= ~kyk +sin(zp), @ ©® G

—brzr + sin(a':k.), .




“Hyperchaos & Labyrinth Chaos: revisiting Thomas-Rdssler systems”
V. Basios , C.G. Antonopoulos, J. Theor. Biol. 460:153-159, (2019)

Chimera states 1:

Labyrinth Chaos
&

Complex Periodic
Oscillations

T . . T T T T T T H:lﬁnm
4 - * . = - "‘II."I"I"--'Ip ll'll_
- . ™ s ln-i'
a | L - - L] * -
s ol ] 10400

2L i

4 L i

1 1 L 1 1 L 1 1 1n3m
0 5 10 15 20 25 30 35 40 o
k E
=
41 7 10200
2 . - - L1 - -1
. gan a® u. "-- sna ssssPsssssenTans
F ot Ry ' .
10100
2L 4
4L 4
o & 10 185 20 25 30 35 40 10000
k
k
(a)

(b)

Figure (: Spatio-temporal phenomena of coherent and incoherent patterns, reminiscent
of chimera states in 40 3-dimensional TR linearly coupled systems that exhibit labyrinth
chaos and complex periodic oscillations with b, = 0 for b = 1,.. ., 20 (labyrinth chaos)

and by = 0.19 for kF =21,..., 40 (complex periodic oscillations). The upper plot in panel

(a) is for ¢ = 10184 and the lower for ¢ = 10371. Panel (b) shows the spatio-temporal
patterns between £ = 10000 and ¢ = 10500. Note that in these plots, d = (.6.



“Hyperchaos & Labyrinth Chaos: revisiting Thomas-Rdssler systems”
V. Basios , C.G. Antonopoulos, J. Theor. Biol. 460:153-159, (2019)
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Figure 5: Spatio-temporal phenomena of coherent and incoherent patterns, reminiscent
of chimera states in 40 3-dimensional TR linearly coupled systems that exhibit labyrinth
chaos and hyperchaos with by = 0 for & = 1,...,20 (labyrinth chaos) and b = 0.18 for
k= 21,...,40 (hyperchaos). The upper plot in panel (a) is for t = 14462 and the lower
for t = 14515. Panel (b) shows the spatio-temporal patterns between t = 10000 and
t = 10500. Note that in these plots, d = 0.6.



In search of a Hamiltonian

X

f(X) VH f(X)

0

X =J(X)VH

“dot” denotes the time-derivative,
X an n-dimensional vector field

f a smooth function from R toR

H(X) Hamiltonian, ‘energy’
J(X) is a skew symmetric matrix

VHT being the transposed of the vector VH

satisfying the Jacobi’s closure condition




e.g. a Hamiltonian for the
Lotka-Volterra System

X = x(a — by)
y=y(—c+dx)

H(x,y) =clnx+alny—dx — by

Manfred Plank: “Hamiltonian structures for LV equations”
J. Math. Phys. 36 (7), July 1995.



Labyrinth Chaos Hamiltonian?

dx

dt
dy

dt
dz

dt

= —bx + sin(y)

X = f(X) - .

= —by + sin(z)

= —bz + sin(x)




Strategy: “Reductio ad absurdum”

Assume there Is an H(x,y,z),
then prove that H(x,y,z)
IS either zero or impossible!



VH' fo(X)=0

oH |

OH oH

—— sin(y) - sin(z) sin(x) =0

ox

0y 0z




Mechanics’ View: Forces and Potentials

The system being conservative, the potential as the
opposite of the path-integral of the force
IS path-independent. ... IT IS NOT

= sin(z) cos(y)

= sin(x) cos(z)

= sin(y) cos(xx)

,,,,,,,,,

\ .

/ P(x,0,0) Q(x,y,0)

U(x,y,z) = —ysin(x) — zsin(y) cos(z)

A\ dt? 7 dt?’ dt?




Yet, there Is a Vector Potential (for b=0) ... easy

It worth remarking that in spite the fact that the system (3) is not Hamil-
tonian, it does have a vector potential. Indeed, it is easy to see that V. = (.
Thus, there exist a field F'(Fy, Fs, Fy), called the vector potential [17], such that
V x F = f. vielding to the following system

OFy OF, |
oy 0 sin(y) (13a)
Fy, OF

{:")zl — (.:'*); = sin(z) (13b)
oFy, OF, .
or Oy = sin(x) (13¢)

As we know, vector potential is not unique. To find a simple solution, we
can let Fy = 0 and straight forward calculations yields to

F(—cos(z), —zsin(y) — cos(x),0). (14)

Remind that for a conservative system, a vector potential is related to the
flow of the field vector f. through the Stokes’ theorem.



| ocal Hamiltonian Structure?

OH
—— sin

ox

in(y)

oOH

oy

sin(z)

OH

3 sin(x) = 0

There Is no function H satisfying the above

* Even locally, it Is not possible to find such a

function.

* To exhibit the local structure we are going to
replace the sinus function by its first terms of
its Taylor expansion (b =0) yields






There I1s a Hamiltonian Iff;

OF., B or, 0 6 ?
Oy 0z X — O
orF, OF,
9z  Or 0 /
oF, OF, _ 0 Which vields after simplification
ox oy )
1— —z%) =0
( )

o~
H
|
o | = B = B | =
| =

—_
|

o =

=

R
|

=

o,
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|

which is obviously net” true for anv x, y, z.




2" Way:
the Path-Integrals’ Independence
dU = —F. dr SN

o]
/ P(x,0,0) 0x.y,0)
2 y
! ¢ !
U= —/ F, dz' — /2 F, dy
0 2'=0 0 v =y’
ny:O =z
x Y z
/ ! /
U = —/ F dx —/ Fy dy —/ F.r dz
0 y'=0 0 v =x 0 =x
2'=0 z'=0 y' =y







Still ...

exists a Vector Potential ...
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Conclusions & Outlook

Elegant, conservative, path-dependent, non-
Hamiltonian, chaos without any attractors.

Chimera-like states ability and the vector
potential we shall seek not-energy driven
phase-coupling.

Related? “active information transfer”
and vector potential (B. Hiley)

Related? “ABC” turbulence model(s).
Other instances of similar systems?
(LLV variants?)

Its Symmetries and Symbolic Dynamics
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