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Outline
Onsager reciprocal relations are a cornerstone in 
nonequilibrium thermodynamics

As the other principles of thermodynamics, they 
introduce fundamental constraints on heat to work 
conversion

Breaking Onsager relations (typically, by a magnetic 
field) would allow, in principle, to have Carnot 
efficiency at finite power

We show that Onsager relations remain valid even in 
the presence of a generic magnetic field



The Nobel Prize in Chemistry 1968: 
From the award ceremony speech

“Professor Lars Onsager has been awarded 
this year’s Nobel Prize for Chemistry (1968) 
for the discovery of the reciprocal relations, 
named after him, and basic to irreversible 
thermodynamics… Onsager’s reciprocal 
relations can be described as a universal 
natural law…It can be said that Onsager’s 
reciprocal relations represent a further law 
making possible a thermodynamic study of 
irreversible processes…It represents one of 
the great advances in science during this 
century.

According to Nico Van Kampen Onsager derived his reciprocal 
relations in a “stroke of genius”



Irreversible thermodynamic

Irreversible thermodynamics based on the postulates of 
equilibrium thermostatics plus the postulate of time-
reversal symmetry of physical laws (if time t is 
replaced by -t and simultaneously applied magnetic 
field B by -B)

The thermodynamic theory of irreversible processes is 
based on the Onsager Reciprocity Theorem

Refs.:        



Thermodynamic forces and fluxes
Irreversible processes are driven by thermodynamic 
forces (or generalized forces or affinities) Xi

Fluxes Ji characterize the response of the system to the 
applied forces

Entropy production rate given by the sum of the 
products of each f lux with i ts associated 
thermodynamic force

S = S(U, V,N1, N2, ...) = S(E0, E1, E2, ...)
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Linear response
Purely resistive systems: fluxes at a given instant 
depend only on the thermodynamic forces at that 
instant (memory effects not considered)

Fluxes vanish as thermodynamic forces vanish
Linear (and purely resistive) processes:

Lij Onsager coefficients (first-order kinetic 
coefficients) depend on intensive quantities (T,P,µ,...)
Phenomenological linear Ohm’s, Fourier’s, Fick’s laws
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Onsager reciprocal relations 

Relationship of Onsager theorem to time-reversal 
symmetry of physical laws  

Consider delayed correlation moments of fluctuations 
(without applied magnetic fields)

�Ej(t) � Ej(t)� Ej , ��Ej� = 0,
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Assume that fluctuations decay is governed by the 
same linear dynamical laws as are macroscopic 
processes

Assume that the fluctuation of each thermodynamic 
force is associated only with the fluctuation of the 
corresponding extensive variable
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Onsager-Casimir relations

Onsager reciprocal relations reflect at the macroscopic level 
the time-reversal symmetry of the microscopic dynamics, 
invariant under the transformation:

With an applied magnetic field one instead obtains 
Onsager-Casimir relations: 

but in principle one could 
violate the Onsager symmetry:



Carnot efficiency at finite power  
with breaking Onsager symmetry?

B applied magnetic field or any 
parameter breaking time-reversibility 

such as the Coriolis force, etc.

�µ = µL � µR

�T = TL � TR

(we assume TL > TR, µL < µR)

�
�

�

Je = Lee(B)Fe + Leh(B)Fh

Jh = Lhe(B)Fe + Lhh(B)Fh



Onsager and transport coefficients





Constraints from thermodynamics

ONSAGER-CASIMIR RELATIONS:

POSITIVITY OF THE ENTROPY PRODUCTION:

G(B) = G(�B)
K(B) = K(�B)

Breaking Onsager symmetry:
[or S(B) 6= S(�B)]
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Both maximum efficiency and  
efficiency at maximum power depend on two parameters



Output power at maximum efficiency

When time-reversibility is broken,  within linear 
response it is not forbidden from the second law to have 
simultaneously Carnot efficiency and non-zero power.

Terms of higher order in the entropy production, 
beyond linear response, will generally be non-zero.         
However, irrespective how close we are to the 
Carnot efficiency, we could in principle find small 
enough forces such that the linear theory holds. 

 [G.B., K. Saito, G. Casati, PRL 106, 230602 (2011)] 



Reversible part of the currents

The reversible part of the currents does not contribute to 
entropy production

Possibility of dissipationless transport?

 [K. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013)] 



How to obtain asymmetry  
in the Seebeck coefficient?

For non-interacting systems, due to the symmetry properties 
of the scattering matrix    

This symmetry does not apply when electron-phonon and 
electron-electron interactions are taken into account  
Let us consider the case of partially coherent transport, with  
inelastic processes simulated by “conceptual probes” 
mimicking inelastic scattering (Buttiker, 1988).



Non-interacting three-terminal model

tJ = (JeL, JhL, JeP , JhP )
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Illustrative three-dot example

Asymmetric structure, e.g.. 



Asymmetric Seebeck coefficient

 [K. Saito, G. B., G. Casati, T. Prosen, PRB 84, 201306(R) (2011)]  
[see also D. Sánchez, L. Serra, PRB 84, 201307(R) (2011)] 



Non-interacting three-terminal bound

[V.. Balachandran, G. B., G. Casati, PRB 87, 
165419 (2013)] 

�
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Bound obtained from the unitarity of 
the S-matrix  
[K.. Brandner, K. Saito, U. Seifert, PRL 110, 
070603 (2013)] 



Multi-terminal non-interacting bound

[Brandner and Seifert, NJP 15, 105003 (2013); PRE 91, 012121 (2015)]  

Numerical evidence that the power vanishes when the 
Carnot efficiency is approached



Bounds with electron-phonon scattering

Efficiency bounded by the non-negativity of the entropy 
production of the original three-terminal junction.

[Yamamoto, Entin-Wohlman, Aharony, Hatano; PRB 94, 121402(R) (2015)] 



 Power-efficiency trade-off 

For heat engines described as Markov processes:

[N. Shiraishi, K. Saito, H. Tasaki, PRL 117, 190601 (2016)]

Moreover, the problem remains open for a generic 
purely Hamiltonian two-terminal system with 
interactions 

The prefactor A may be arbitrarily large, for instance 
diverge close to a phase transition



Onsager relations  
with broken time-reversal symmetry

Onsager relations under an applied magnetic field 
remain valid:

1) for noninteracting systems

2) if the magnetic field is  constant

What about for a generic, spatially dependent 
magnetic field?

[Bonella, Ciccotti, Rondoni, EPL 108, 60004 (2014)] 



Symmetry without magnetic field inversion

Analytical result for 
Landau gauge:

Equations of motion 
invariant under:



Numerics for a generic magnetic field

Use a stochastic model for the reservoirs

Dynamics described by the multi-particle collision 
method (Kapral method)



Multiparticle collision dynamics (Kapral model)

Streaming step: free propagation during a time τ

Collision step: random rotations of the velocities of the 
particles in cells of linear size a with respect to the 
center of mass velocity:

Total energy and total momentum are conserved



Numerical results

generic 2D case:

generic 3D case:Theoretical argument: 
divide the system into small 
volumes 
Time-reversal trajectories without 
reversing the field for



No-go theorem for finite power at the Carnot efficiency on purely 
thermodynamic grounds?

Onsager reciprocal relations much more general than expected so 
far. 

Final remarks





Quantum computation and information is a 
rapidly developing interdisciplinary field. It 
is not easy to understand its fundamental 
concepts and central results without facing 
numerous technical details. This book 
provides the reader with a useful 
guide. In particular, the initial 
chapters offer a simple and self-
contained introduction; no previous 
knowledge of quantum mechanics 
or classical computation is required.

Various important aspects of quan-
tum computation and information 
are covered in depth, starting from the foun-
dations (the basic concepts of computational 
complexity, energy, entropy, and information, 
quantum superposition and entanglement, 
elementary quantum gates, the main quan-
tum algorithms, quantum teleportation, and 
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quantum cryptography) up to advanced 
topics (like entanglement measures, quan-
tum discord, quantum noise, quantum 
channels, quantum error correction, quan-
tum simulators, and tensor networks).

It can be used as a broad range 
textbook for a course in quantum 
information and computation, 
both for upper-level undergraduate 
s t u d e n t s  a n d  f o r  g r a d u a t e 
students.  I t  contains a large 
number of solved exercises, which 

are an essential complement to the text, as 
they will help the student to become 
familiar with the subject. The book may also 
be useful as general education for readers 
who want to know the fundamental 
principles of quantum information and 
computation.


