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1. Let us consider in more detail the Chaplygin ball problem. We recall that
the Chaplygin ball is a spherical rigid body in which the principal moments of
inertia are different and the center of mass is at the geometric center. For the
first time this problem was explicitly integrated by S. A. Chaplygin [29] in 1903.
In this case, the equations of motion have an invariant measure, preserve
energy and the angular momentum vector referred to the axes of a fixed
coordinate system. This case is similar to the Euler case in rigid body dynamics
and can be exactly reduced to it if the angular momentum lies in the direction
perpendicular to the horizontal plane [29, 14].

However, in contrast to the Euler case, (reduced) equations of motion are
represented in Hamiltonian form only after rescaling time [22]. An explicit
representation in conformally Hamiltonian form is presented in [23], and some
justification of the found representation is discussed in [2]. An analysis of

trajectories of the point of contact of the Chaplygin ball on a plane is presented
in [13].



2. In connection with the development of the methods of nonholonomic
mechanics and possible applications of rolling balls to robotics, various versions
of the Chaplygin ball rolling problem are considered:

— addition of gyrostatic momentum [48] and the Brun field [44];

— rolling in a spherical suspension (BMF system) [10, 9], a ball
suspension [37,14] and on a uniformly rotating plane [51, 35, 3, 11];

— addition of a fluid-filled cavity to the ball [21].

We also highlight a new spectrum of problems which involve considering
another nonholonomic model. In addition to assuming that the velocity of the
point of contact is zero, this model assumes that the projection of the angular
velocity onto the normal to the plane is also zero (i.e., there is no spinning).

In [34] it is proposed to implement this model by coating the rolling body with
sufficiently soft rubber (see also [42]). This is why it is also called the rubber
rolling model.

Within the rubber model the Chaplygin ball rolling problem is integrable and
is addressed in [27, 19]. It has turned out that in the case of the Chaplygin ball
there exists an interrelation between the rubber rolling model and the standard
(classical) model of rolling without slipping with the possibility of spinning: the
trajectories of the reduced system for the Chaplygin ball turn out to be
transversal (to each other) windings of the same tori [8, 52].



3. Of particularly great interest from the viewpoint of control theory and
various applications [12] are problems of the rolling of a ball with periodically
varying mass distribution, which is caused by the control mechanism placed
inside the ball [49, 41, 43]. The qualitative analysis of such systems is
complicated by the fact that they reduce to investigating a Poincaré map, which
defies visualization (since its dimension is greater than three). Moreover, the
reduced equations of motion explicitly depend on time, which makes the
stability analysis of particular motions difficult.

One of the simplest examples of such systems is the (toy) beaver ball’ (see Fig.
1). It is a spherical shell inside which a rigid body (rotor, frame) rotates with
constant angular velocity about the axis passing through the geometric center of
the sphere. The body is fastened in such a way that its center of mass does not lie
on the axis of rotation. As a result, the center of mass of the entire system is
displaced relative to the geometric center of the shell and executes periodic
motion. In [41] this influence of the rigid body is modeled using a material point
which moves in a circle, and the analysis of the equations of motion thus obtained is
confined to numerically constructing the trajectory of the point of contact and the
time dependence of the angular velocity of the ball for fixed initial conditions and
parameters.

'The use of the word beaver is due to the fact that commercial variants have a furry toy fastened
on the outer side of the sphere.



Fig. 1 : Beaver ball in dismantled form.

It has recently been shown [4,43, 5, 6] that nonholonomic systems with
periodically varying mass distribution may exhibit motions where the velocity of
the carrying body increases indefinitely. In contrast to Hamiltonian systems (see,
e.qg., [47]), the indefinite increase in the velocity is characteristic of systems

that reduce to a two-dimensional map which is no longer area-preserving.



4 .\We consider the problem of the rolling of a dynamically
symmetric spherical shell with a frame (rigid body) which rotates along its
symmetry axis and on which rotors (gyrostats) are fastened. It is assumed that
the center of mass of the entire system is at the geometric center of the ball.
This case arises, for example, if one places the rigid body inside the shell of
the beaver ball in such a way that its center of mass is at the geometric center
of the shell (balanced beaver ball).

Generally speaking, the analysis of dynamical equations of an (unbalanced)
beaver ball is complicated by the large dimension of the Poincaré map. For the
system under consideration, the problem is reduced, by using additional
integrals, to investigating of a two-dimensional Poincaré map. We present the
main results obtained In this study:

— Equations of motion are obtained which describe the rolling without
slipping (for the classical rolling model and the rubber rolling model) of a
robot with a spherical shell. In the case of constant velocity of rotation of
the shell relative to the frame (capsule), a representation of the equations
of motion in the form of an autonomous system is found which is a
generalization of the nonholonomic system in the Chaplygin ball problem
(see Section 2). In this case, however, these equations have no continuous
invariant measure and no energy integral.



— Conservation laws (first integrals) are found and it is shown that on the
corresponding integral surface (which turns out to be three-dimensional)
the analysis of the reduced system can be carried out using a
two-dimensional Poincaré map (see Section 3).

— A qualitative analysis for the rubber rolling model is carried out in the case
of motion of the system from rest. In particular, a stability analysis is made
of partial solutions that correspond to the fixed points of the reduced
system. The asymptotic nature of the behavior of the system in a
neighborhood of these solutions suggests that that there is no continuous
invariant measure. This is indicative of a considerable difference of this
system from the Chaplygin ball problem and its various generalizations
(see Section 4).

— Partial solutions are found for which the internal frame (capsule) remains
fixed relative to the supporting surface, and conditions for their stability
(gyroscopic stabilization) are analyzed (see Section 5.1).

— It is shown that at certain parameter values the system may exhibit
irregular (chaotic) behavior.
In this case, a strange attractor arises in the phase space of the reduced
system (see Section 5.2).



The beaver ball is of interest to children, since it exhibits interesting
dynamical behavior — it moves chaotically on the plane and behaves particularly
strangely when colliding with obstacles. For the system considered in this
paper, problems of chaotic behavior in the reduced phase space and of the
behavior of the point of contact are only touched upon. Yet these problems,
which are undoubtedly of interest, require a more detailed investigation of the
resulting system.



2. EQUATIONS OF MOTION
Consider a system moving on a horizontal plane and consisting of several

bodies (see Fig. 3):
1) a dynamically symmetric spherical shell in which the center of mass is at

the geometric center;

2) a frame,’ a rigid body with an arbitrary mass distribution, which is fastened
inside the shell by means of cylindrical hinges. The frame is able to rotate

relative to the shell with a given angular velocity €2(%);
3) n dynamically symmetric rigid bodies (rotors) which are fastened on the

frame.

Fig. 3: Structure of the system for one rotor (n = 1).

°As a rule, it is the frame that is of the greatest technical importance in mobile devices, since
devices for observations, life-support capsules etc. can be connected with it. Therefore, its
stabilization relative to the fixed coordinate system is a high-priority problem.



We assume that the frame and the rotors are located inside the spherical
shell in such a way that the center of mass of the entire system is at the
geometric center of the shell, that is, we consider a balanced case.

Suppose that the frame and the rotors execute the following motion relative
to the shell:

— the frame rotates with angular velocity €2(¢), given as a function of time,
about the axis of dynamical symmetry of the shell. If the shell is
homogeneous, then any straight line passing through the geometric center
of the shell can be chosen as the axis of rotation of the frame;

— the rotors rotate (relative to the frame) with angular velocity qf')t-(t), given
as a function of time, about its axis of dynamical symmetry n;.

We define two coordinate systems (see Fig. 4):

— an /nertial coordinate system OXY Z with origin at some point of the
plane and with the axis OZ perpendicular to it.

— a noninertial coordinate system C'z1x2x3, which is attached to the frame,
so that the origin C' coincides with the center of mass of the system.
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Fig. 4: The system on the plane.

A distinctive feature of this system is the fact that the mass distribution
remains constant in the coordinate system Czixox3. This is due to the fact that
the rotors and the shell in this system rotate in a prescribed manner about their
symmetry axes (in contrast to the coordinate system attached to the shell).



Configuration space. Let Rc = (X., Y., Z.) be the coordinates of the
center of mass of the system in the inertial coordinate system OXY Z and let S
be the matrix of rotation of the fixed axes relative to the coordinate system
attached to the frame C'xixoxs3.

Let us parameterize S by o, 3 and -, the unit vectors of the inertial
coordinate system referred to the axes C'z1x2x3:

1 51 Y1
S=|a B2 | €SO3,
as B3 3

where the unit vector ~y defines the normal to the plane, I.e., it is directed along
the axis OZ.

REMARK 1. In this case, obvious geometric relations expressing the condition of
orthogonality of the matrix S are satisfied:

(o, B) = (B,7) = (v, ) =0,
a’=p0p3*=~%=1.



Since the motion of the shell and the rotor relative to the frame is defined at
any instant of time, the pair R¢, S uniquely defines the configuration of the
system. Thus,

N ={Rc, S} ~ R’ x SO(3)
Is the configuration space of this system.

REMARK 2. Here and in what follows, we denote vectors by bold italic a, b, ..., and
write their scalar and vector product as (a,b) and a X b, respectively. The sign = above
the vector denotes the skew-symmetric matrix @ = ¢;,,ay, where ijk is the Levi-Civita
symbol. The sign ® denotes a tensor product, i.e., in matrix form a ® b = ||a;b;||.
Boldface upright font is used to denote the matrices: A, B, .. ..



Quasi-velocities. We parameterize the tangent space T'A/ by the velocity
of the center of mass of the system, v = (v1,v2,v3), and by the angular
velocity of the frame, w = (w1, w2,ws), which are referred to the moving axes
Cxixoxs. They are expressed in terms of configuration variables and their
derivatives as follows (see [17] for details):

& =SS, v=SRc,
s 0 — W9
o= (& 8, %)

Here and in what follows (unless otherwise specified), all vectors are
referred to the moving axes C'xix2x3.



Models of rolling and constraint equations. Two nonholonomic models of

a shell rolling on a plane are possible:
1. The model of rolling without slipping (c/assical rolling model), in which the

velocity at the contact point of the shell is zero:
f:v+a,7x(w—ﬂ(t)):0, (1)

where a Is the radius of the spherical shell.

2. The model of rolling without slipping and spinning (rubber rolling model),
which, in addition to assuming zero velocity of the point of contact,
assumes that there is no spinning of the shell relative to «, the normal to
the plane at the point of contact P:

fo=(w—Q(t),y) =0. (2)

As a rule, this model is called the rubber rolling model [34, 27] to
emphasize that, by coating the body with rubber, one can ensure a proper
contact with the plane.

Thus, in the coordinate system C'z1x223 nonholonomic constraints are given
by relations that are inhomogeneous in the velocities v and w.



Kinetic energy. The kinetic energy in the coordinate system Cx1x2x3 can
be represented as

1 1
T = gm'vg + 5 (w, Iw) + (k(t), w),
where m and 1 are, respectively, the mass and the tensor of inertia of the
system, and k(%) is the vector of the total gyrostatic momentum of the rotors

and the frame, which is expressed in terms of their angular velocities:

Zﬁfﬁst(t — Js{2 ( )

=1

where Js and j; are the moments of inertia of the shell and the 7th rotor,
respectively.

We direct the axes of the coordinate system C'z1x2x3 along the principal
axes of inertia of the system, thus, I = diag([1, I2, I3) is a diagonal matrix.



Equations of motion. In the general case, we represent the equations of
motion in the form of Poincaré — Suslov equations (for details see [18, 38]):

d (0T T _oT af, . f

dt(8w>+uxﬁw VX B Z)‘aw R0 B "
d (0T T afi \, 2fo
a(%)ﬂ”% 2 Mgy thog

1=1

where A = (A1, A2, A3) and Ao are the undetermined multipliers defining the
reaction of the constraints (1) and (2), respectively.

REMARK 3. The center of mass of the entire system coincides with the geometric
center, therefore, the system of equations (3) contains no terms with potential of the
gravitational field (since U = const).

Differentiating the constraint (1), we find from the last equation of (3):

A= —may X (w— Q(t)) —ma”y X (w — 2(t)) — maw x (v X (w — Q(t))).



Substituting A thus found into the first equation of (3) and writing a
kinematic relation for the normal vector ~y, we obtain

Iw = (Tw + k(t)) x w +ma®(w — Q(t),¥)y X w + Ao
+ ma®(w,¥)y x Qt) + ma’vy X (Q(t) X ) — k(t),
I=I+ma’ (v —v®7),
F = Y X W,

(4)

where I is the tensor of inertia of the system relative to the point of contact P.

In order to obtain equations of motion in the classical rolling model in the
system (4), we need to set \o = 0, and in the case of the rubber rolling mode/
Ao /s defined from the constraint (2).



Differentiating the constraint (2) with respect to time, we obtain

L

(I, I y) — (2(t),y x w) + (2(¢),v) = 0.

From this equation, taking (4) into account, we find the undetermined multiplier
Ao as a function of the angular velocity w and of the normal ~:

e

(I_lﬂyj (iw + k(t)) X w+ma’(w — Q(t),v)y X w+ W)
(LT, 4)
(2(t), 7 x w) + (1), ) (5)
(I-1v,7) |
W = ma’(w,v)y x Q(t) + ma’~y x (Q(t) X ) — k(t).

Ao =

We see that Eqgs. (4) are closed relative to the variables w, v and form a
reduced system.



Reconstruction of dynamics. From the known functions w(t) and ~(%) the
orientation of the frame is described by the following system of equations:

d=axw B=08Xxuw. (6)

The equations of motion for the coordinates of the contact point
Rp = (X,Y,0) of the shell in the fixed coordinate system OXY Z have the
form

X = a(B,w — (), Y = —a(o,w — Q(t)). (7)

In the noninertial coordinate system Cxix2x3 (attached to the frame) the
equations of motion (4), (6) and (7) have a simpler form than the equations in
the coordinate system attached to the shell, which makes them amenable to a
detailed qualitative analysis.

Below, we will consider separately the case of the rubber rolling and that of
the classical rolling of the ball, since the conservation laws for them are
different.

REMARK 4. In this case, the symmetry group of the entire system is the group of
motions of the plane SFE(2). We see that the components of the vectors w and ~ are its
invariants. Consequently, choosing the suitable coordinate system Cxix2x3, we have in
fact performed a reduction by symmetries.



3. CONSERVATION LAWS
3.1. Rolling of the Shell Without Slipping and Spinning (Rubber
Model) Let us define the angular momentum:

M =~x (Iw—K(t)), K(t)=k(t)—ma“Q(t), (8)
which lies in the horizontal plane OXY:
(M,~) = 0.

The equations of motion for M and -, taking the constraint (2) into account,
can be represented as

M=MXxw, y=~Xuw,

o M x A~ () + AK(t),5) (9)

where A = diag(a1,a2,a3) = (I+ma®*E)™" is the diagonal matrix.

As can be seen, the angular momentum M is constant in the fixed
coordinate system OXY Z, and hence the reduced system (9) possesses the
following integrals of motion:

Fo=v°, Fi=(M,y), Fa=M",

and, according to the definition of M and ~y, we obtain Fp =1, F1 = 0.
Now suppose that the angular velocity of the frame and the generalized
gyrostatic momentum do not depend explicitly on time:

() = const, K = const.



Then the problem reduces to investigating the autonomous system of
Egs. (9), which describes the flow on the three-dimensional manifold
parameterized by the value of the integral 5 = f = const:

M? — {(M:F}’) [’72 = 13(M?7) :O?Mg :f}"

which is a bundle of unit tangent vectors [40].

REMARK 5. If £2 # 0, then the nonholonomic constraints (1) and (2) are
inhomogeneous in the velocities. As is well known [26, 35], the equations of motion (9)
generally have no energy integral for such systems. Nevertheless, if A is an axisymmetric
matrix and the vectors {2 and K are directed along its symmetry axis, then the
system (9) describes the rolling of a balanced Routh sphere with a rotor. In this case, the
system (9) has an energy integral and an invariant measure (i. e., it is integrable by
quadratures [45, 20]) in the rubber and the classical rolling model. We will not consider
this case in what follows.

For the system (9) to be integrable by the Euler — Jacobi theorem, we need
an additional integral and an invariant measure. Below it will be shown that in
the general case the system (9) has chaotic trajectories, which suggests that it
has no analytic integrals. In addition, simple and strange attractors will be
found, and so, in the general case, there is no invariant measure with
continuous density.



3.2. Rolling of the Shell Without Slipping (Classical Model) It turns out
that, in the case of the classical rolling model there also exists angular
momentum M, which is constant in the fixed coordinate system OXY Z. We
represent it in the following form:

M =1Iw+ K(t) —d(Qt),y)y, K(t)=k(t)—dQt), d=ma’.

The reduced equations of motion for M and -~y have the form
M =M X w, v =9 X w,

(A(M - K(t)) — Q,7) (10)

d=! — (Av,vy)
where A = (I +ma’E)™" is the diagonal matrix.
Thus, the system possesses the following integrals of motion:

FU:721 = (M,), FQ:MQ?
where Fy = 1 and, in contrast to the rubber model, in the general case one
has F1 # 0.

If one assumes the angular velocity of the frame and the gyrostatic
momentum to be constant (£2 = const, K = const), then, as in the rubber
rolling model, the problem reduces to investigating the autonomous system of
equations (9), which describes the flow on the three-dimensional manifold
parameterized by the values of the integrals F7; = ¢ = const and
F> = f = const:

Mif — {(M&’Y) ‘ 72 — 1?(M:’Y) — G, M2 — f}

For the system (10) to be integrable by the Euler — Jacobi theorem, we need an
additional integral and an invariant measure.

w=AM - K(t)+ Zv), Z=



3.3. Reconstruction for Fixed Values of First Integrals

In this case, by choosing the orientation of the axes of the fixed coordinate
system one can eliminate the equations of motion (6) for the unit vectors « and
3 (i.e., perform reduction). We describe this procedure in more detail.

Let M # 0 and M J ~ (the latter condition is automatically satisfied for the
rubber rolling model, since (M ,~) = 0). Then on the fixed level set of the first
integrals M* = f, (M ,~) = c we choose the unit vectors ac and 3 in the form

This yields equations for the trajectory of the point of contact in the form

X: (MXFY?W_Q)a Y: (M_CFY}W_Q):

Vi Ve

where w is expressed explicitly in terms of M and ~ for the rubber rolling
model from relation (9), and for the classical rolling model, from the

formulae (10). For the rubber rolling model, in these relations we also need to
set ¢ = 0.



We note that in both cases (the rubber rolling model and the classical rolling
model) preservation of the squared momentum F», = M* leads to boundedness
of the trajectories of the reduced system (9). Thus, there are no trajectories in
which the shell accelerates constantly. In addition, the existence of additional
integrals allows one to reduce the problem to investigating a two-dimensional
Poincaré map, to single out various partial solutions and to study them. Below
we consider in more detail the rubber model of a rolling shell.



4. MOTION OF THE SYSTEM FROM REST FOR THE RUBBER MODEL
OF A ROLLING SHELL

Consider the system (9) (i.e., the rubber rolling model) on the zero level set
of the integral F» = M? = 0 and at constant values € = const, K = const. It
follows from F5 = 0 that each component of the vector of momentum M = 0 is
zero.

This case can be physically realized, for example, if one begins to increase
the angular velocity of the frame €2(¢) and the gyrostatic momentum K (t) from
rest (w = {2 = K = 0) to some fixed values {2 = const, K = const. In this
case, the value M = 0 will remain unchanged, since Fs = M? is also a first
integral if 2(¢) and K (t) depend explicitly on time.

In this case the reduced system describes a vector field on a
two-dimensional sphere:

Mig={(M,y) | M =0,v*=1} ~S>

Q2+ AK,~)

(11)
(Av,7)
The remaining equations of motion for defining the orientation of the frame
and the trajectory of the point of contact can be represented as

which has the form (

a=axA(Zy-K), B=BxA(Zy-K),
X=a(B,A(Zy-K)-9Q), Y=—-a(a,A(Zy-K)—-Q).

Thus, at the first stage the problem reduces to investigating the two-dimensional
autonomous system (11), in which chaotic trajectories are known to be absent.

(12)



When €2 = 0, the system (11) describes a particular case of generalization
of the problem of the rubber Chaplygin ball with a gyrostat [8,27] and admits
the first integral

(AK,~)?
(A,7)

In the general case, the level surface of this integral is an elliptic cone, so that
in this case all trajectories of the system (11) on the sphere ~v? = 1 turn out to
be closed. Below it will be shown that, if £2 = 0, then the system (11) has
asymptotically stable equilibrium points and limit cycles.

— const.

REMARK 6. The system (11) possesses the symmetry v — —~. As a result, isolated
fixed points occur In pairs.



5. REGULAR AND CHAOTIC MOTIONS FOR THE RUBBER MODEL
OF A ROLLING SHELL

5.1. Straight-line Motions The reduced system (9) possesses a
degenerate one-parameter family of the simplest equilibrium points for which
w = 0:

» = {M:*yo % K, ¥ =2 | (§,79) =0, '73:1}, Yo = const.  (17)

In this case, the frame is at rest relative to the fixed coordinate system OXY Z,

and the contact point P of the spherical shell traces out a straight line on the
plane OXY .

REMARK 8. From the viewpoint of technical and engineering applications, these
solutions are of particularly great importance, since it is in this case that the stabilization
of the frame (and the devices connected with it) relative to the fixed coordinate system is
achieved. A similar method of gyroscopic stabilization is used in a segway, which is a
frame connected with a wheel pair (instead of a spherical shell).

Let us analyze the stability of the found solutions. The characteristic
polynomial of the linearized system (9) in a neighborhood of the equilibrium
points ! is represented as

P(X\) = A°Ps()),

A~q, 7o X ) o det A > 1
P}\:)\BI(”’O X4 K. — (K, A7'Q)) )\
3( ) (AFYO:PYU) (AP}’DﬂFYO) (( 70) ( ))
det A
| K, K, X €2).
(AFY[}:FY[}) ( 70)( Yo )

(18)



We see that the last term in P3(\) vanishes for K = €2, where ¢ = const
(i.e., K || ). In this case, the family X" lies entirely on the fixed level set of
the integral M3, f = K?Z. In this case, the characteristic polynomial (18) has
the form

P(A) = A Pa()),
(AF}(O&FYD X Q) A\ det A

= (AY0,Y0) (Av0570)

(K,A™'Q).

In the general case (K }f 2), the family X" is transverse to the level
surfaces of the integrals M. Thus, the fixed points from X' turn out to be
isolated on M? Next, we consider in detail only the case K 1 2, since
calculations simplify considerably in this case. A detailed analysis of all possible
cases requires a separate study.

The case K | €. The normal vector for the equilibrium points ' can be
represented as

Yo = 1K 4+ c2 K X €. (19)

Next, from the geometric integral and the integral F> = f we find (taking
(€2, K) = 0 into account):

K (A +e39°) =1, aK*'Q° = f.

Solving this system for the coefficients ¢; and c2, we obtain



Proposition 3. /f f < K*, then on each level surface of the first integrals
M} there are four isolated equilibrium points %' :

MiNS ={orUo_Uds UG},

{CI VE? - f VT }

S e < B <
K? —

o A — (,‘:1=::\/ 5 f,(.‘:2= 2\/-'}?2 :
K K2V

When f = K?*, there are two of these equilibrium points and the family X'
touches M?e

According to the Routh — Hurwitz criterion, for an equilibrium point to be
stable, it is necessary that the free coefficient in the polynomial P3(\) be
positive. In this case, after substituting (19) into the characteristic
polynomial (18) and after abbreviating the positive polynomial, we find the
stability condition:

cics < 0.

This yields the following proposition.



Proposition 4. On the fixed level set of the integrals M3, f < K? the
equilibrium points o1 and 0_ are unstable regardless of the parameters.

Further, using the Routh — Hurwitz criterion, we find that, for c_ and 04 to
be stable, the following inequalities must be satisfied:

(clAK’ +eA(K x Q),e10 x K + cmz) >0,
(ClAK + CQA(K X 9)3019 X K + 6292) (C1K4 — (KjA_lﬂ)) (20)

+6162K2 (clAK ~+ CQA(K X Q)j (ClK + co K X Q))KQQQ > 0.

A typical view of a stability region on the parameter plane (K;, K2) is shown in
Fig. 9.

Numerical experiments (see Fig. 10) show that, if we choose parameters in
the stability region in Fig. 9, then there exist trajectories which from the
neighborhood of the unstable equilibrium point (o0 or d_) tend asymptotically
to another equilibrium point (oc_ or 01).



The trajectory of the contact point for the equilibrium points o+ and 0-
described by the relations

IS

1

X(t) = i) Y(t) — 4+aV Q% ~+ Yo,

X0, Yo = const,

where the signs + and — correspond, respectively, to o+ and 04. Thus, the
shell rolls along a straight line parallel to the axis OY .

AK—E
10+

~10 -5 0 5 10

N

—10-

Fig. 9: The stability region (gray) of the equilibrium points o_ and 0 on the parameter
plane (K7, K2) for fixed K3 =0, £ = (0,0,1), A = diag(0.5,0.3,0.6).
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Fig. 10: Projection of the trajectory onto the Poisson sphere, the time dependence of the
components of momentum M (t) and the trajectory of the contact point of the shell with
the initial conditions from the neighborhood of the unstable equilibrium point o+ and
z(0) = 0, y(0) = 0 for the fixed parameters: €2 = (0,0,1), K = (4,5, 0),

A = diag(0.5,0.3,06), ¢ = 1, f =3.



5.2. Restriction of the Flow to M}g’o and a Poincaré Map

To carry out a numerical analysis of the behavior of the trajectories of the
reduced system (9) in the general case, in the absence of equilibrium points X*
on the integral surfaces M‘} (i.,e., f > K?), we use a Poincaré map.

We first restrict this system to the three-dimensional manifold of the level
set of the common integrals M?c For this, we use the Andoyer — Deprit

variables (L,[, g) [17]:

My =+/f— L2?sinl, My =+/f—L%2cosl, Ms=L,
9 da cosgsinl +singcosl, -y L cos gcos | — sin g sin |
] = —— ; D — s y
v f

vai (21)

2
¥3 = —4 /1 CoSs g,
i

where [, g € [0,27) are the angle variables and L, f satisfy the obvious
inequality

o<
v

~1<



As a secant for this flow on Mf’c we choose the submanifold given by

g = go.

Numerically integrating the systems under consideration and finding the
intersections of trajectories with the given section, we finally obtain a family of

point two-dimensional maps:

2 2
Dy go: Mgy —+ My,

22
Mg, = {x € M” | g(z) = go}. -4

We will parameterize the manifold MED by a pair of variables [ mod 27

I L . ¥ . .
and 77 (|W| < 1) so that the pair (l,, W) defines a point on the

two-dimensional unit sphere S%. The trajectories of this map for go = 0 and
different parameter values are shown in Fig. 11.



Fig. 11: A Poincaré map for the fixed parameters: a)
A = diag(0.7,0.6,0.8), f = 25, b) 2 = (0,0, 2),
A = diag(0.8,0.6,0.7), f =25, go = 0.

27T



Fig. 12
|=diag (0.8, 0.7, 0,6), K=(0, 0, 0), Q =(3, 2, 0),
d=0, =25, go=0

Fig. 13
|=diag (0.8, 0.7, 0,6), K=(0, 0, 0), Q =(3, 2, 0),
d=0.05, =25, go=0
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Fig. 15
|=diag (0.8, 0.7, 0,6), K=(0, 0, 0), Q =(3, 2, 0),
d=1, =25, go=0

Fig. 14

|=diag (0.8, 0.7, 0,6), K=(0, 0, 0), €2 =(3, 2, 0),

d=0.4, f=25, go=0
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The increase Poincare map

Fig. 16a
|=diag (0.8, 0.7, 0,6), K=(0, 0, 0), Q2 =(3, 2, 0),
d=4, =25, go=0

bl

578482 4.06051 4.33

" W

23345 5.50914

0.171103.269960.3688210.46768 .56




(3,2,0),

—

(0.8,0.7,0,6), K=(0,0, 0), Q2

iag

=d

25, go=0

20, f=

d_

e

[

.28

(—
I L Ll L e e N
& - - - __—__-.l.-- ”.-..._u-.- & .
L ] Lo l.'l.’ B - I‘
¥ aw s 0 g EeNN
T ._..I._.-....___.__..._..._._.._..._...._ -
" W o % Bamw
- L Ty l...n-.I.-_-.....
" - "
- I
& " N Wag, 0 e mEmeS
5 .-. . l...r...__!.n-“._rl__._._......-.r W
- % ey, o
L e e Fal sweny
ket o M -

* e ] S W E
- m Na Ta WVEEG O
L LTy L
a T m e N el Y B, X
- “- % ._+-_.+++_.-J. TN e T
- ...._.- .._-.-n.-_.n..._ = ey A

" b Bk | a® a " = ma
L - -
" opa N Senraty L e,
L ] # . #
wa LT aa

..+-.+---._.J..-._ b Tt bl ]
T -

gy W% =
AN e

= P S
.l.--. ...-__a.-.._-._...l-......f -.w...

[
.___..m..u,.r_.
% L
.__....__..

Fig. 17b

The increase Poincare map

-
L
L | ®
. L]
L3 -
. L3 ] &
L] &
o = .
-l.._ [
-
L]
& g8 @
i & o5
i, o
- . "
L]
1 & -
i " am
-
- ®
e e
L]
- - -
#
", -
L
L]
¥ L]
W St
. 1.r:.l
" = .
" .
[
.._..-_l_- - " .




Fig. 18
|=diag (0.2, 0.5, 0,8), K=(2, 5, 4), Q =(-2,0, 2),
d=1.3, f=25, go=0

Fig. 19
|=diag (0.3, 0.5, 0,8), K=(2, 4, 0), Q =(-2, 0, 2),
d=1.2, f=25, go=0




5.3. Asymptotically Stable Regimes of Motion (Attractors)

The numerical investigation of the Poincaré map has shown that the
following types of attractors occur on it: fixed points, limit cycles and a strange
(chaotic) attractor. In Fig. 11a, the fixed points ®¢ ,, correspond to the largest
concentration of points (almost black regions), and the limit cycle corresponds
to the curve which on this involute of the sphere consists of two parts.

In M3, the fixed points of the map ®; 4, correspond to a periodic solution
and the invariant curve in Fig. 11a corresponds to a limit torus. The motion of the

point of contact in this case is shown in Fig. 20b and Fig. 21b. The point of contact

of the shell can be seen to undergo mean motion along the axis OX . Note that the
displacement along the axis OY does not exceed some fixed value.

Moreover, a strange attractor arises at some parameters of the map @ 4,
(see Fig. 11b). This attractor corresponds to the following Lyapunov exponents:

A =011, A2=0, A3=0  As=0 As5=0, As=~ —0.13.

Its Kaplan — Yorke dimension on the Poincaré map is

A4
f) =1+ ~ 1.84.
| Asg]

The trajectory of the contact point for this case is shown in Fig. 22. As can be seen,
the point of contact of the shell undergoes, as before, mean motion along the axis

O.X, but the deviation along the axis OY can increase (irreqularly).
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Fig. 20: Projection of the trajectory onto the Poisson sphere and the trajectory of the point of
contact for the initial conditions from the neighborhood of the stable fixed pointin the

Poincaré map in Fig. 11a (L = 3.6, { = 0.6) and for the initial conditions X (0) = 0,
Y(0) =0, (a =1).
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Fig. 21: Projection of the trajectory onto the Poisson sphere and the trajectory of the point of
contact for the initial conditions from the neighborhood of the stable limit cycle in the Poincare

map in Fig. 11a (L = 0, = 1.96) and for the initial conditions X (0) = O,
Y{0) =0, la=1).
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Fig. 22: The trajectory of the point of contact for the initial conditions from the

neighborhood of the stable limit cycle in the Poincaré map in Fig. 11b (L = 0, [ = 0.6) and
for the initial conditions X (0) =0, Y (0) =0, (a =1).
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