Further and More on Equilibria of 3D Autonomous Chaotic Systems

GuanRong Chen

Lorenz System

$$
\begin{cases} \n\dot{x} = a(y - x) \\
\dot{y} = cx - xz - y \\
\dot{z} = xy - bz\n\end{cases}
$$

 $a=10, b=8/3, c=28$

E. N. Lorenz, "Deterministic non-periodic flow," J. Atmos. Sci., 20: 130-141, 1963.

Main Characteristics

"Simple" Autonomous 3D Quadratic (smooth) 3 Equilibria (two saddles) Hyperbolic (Jacobian eigenvalues (- , 0, +))

After all, it is chaotic

3D Autonomous Chaotic Systems

State of the Art: with

- \checkmark No equilibrium points
- \checkmark One equilibrium point
- \checkmark Two equilibrium points
- \checkmark Three equilibrium points
- \checkmark Any number of equilibrium points
- \checkmark Infinitely many equilibrium points

Chaotic system with no equilibrium points

X Wang and G Chen: Constructing a chaotic system with any number of equilibria, Nonl Dynam 2013

More: Chaotic systems with no equilibrium (1/2)

S. Jafaria, J.C. Sprott, S. M. R. H. Golpayegani, Elementary quadratic chaotic flows with no equilibria, Phys. Lett. A 377, 699-702 (2013)

Chaotic systems with no equilibrium (2/2)

S. Jafaria, J.C. Sprott, S. M. R. H. Golpayegani, Elementary quadratic chaotic flows with no equilibria, Phys. Lett. A 377, 699-702 (2013)

Chaotic system with one stable equilibrium

 $a = +0.05$

 $(-0.60746, -0.19627 \pm 0.61076i)$

X Wang and G Chen: A chaotic system with only one stable equilibrium, Comm in Nonl Sci and Numer Simul, 2012

More: chaotic systems with one equilibrium

Table 1. 23 simple chaotic flows with one stable equilibrium.

M. Molaie, S. Jafari, J. C. Sprott, and S. M. R. H. Golpayegani, Simple chaotic flows with one stable equilibrium, Int. J. Bifur. Chaos, 23(11), 1350188, 2013.

Chaotic systems with two equilibrium points

2 Stable Foci

 $\lambda_{2,3} = -0.1111 \pm 9.7635i$

Q. Yang, Z. Wei and G. Chen, IJBC (2010)

Chaotic systems with three equilibrium points

1 Saddle + 2 Stable Foci

Chaotic systems with any number of equilibrium points

X Wang and G Chen: Constructing a chaotic system with any number

Symmetry

Example

$$
\mathbb{R}_y(\pi) \begin{cases} u = x^2 - z^2 \\ v = y \\ w = 2xz \end{cases}
$$
local diffeomorphism

$$
\begin{cases}\n\dot{u} = vw + a \\
\dot{v} = u^2 - v \\
\dot{w} = 1 - 4u.\n\end{cases}\n\longrightarrow\n\begin{cases}\n\dot{x} = \frac{1}{2} \frac{z + 2yx^2 z + xa - 4x^2 z + 4z^3}{x^2 + z^2} \\
\dot{y} = (x^2 - z^2)^2 - y \\
\dot{z} = -\frac{1}{2} \frac{2yxz^2 + za - 4xz^2 - x + 4x^3}{x^2 + z^2}.\n\end{cases}
$$

One equilibrium Two equilibria

Stability of the two equilibrium points

- Two symmetrical equilibrium points (independent of parameter *a*) $P1(\frac{1}{2}, \frac{1}{16}, 0)$ and $P1(-\frac{1}{2}, \frac{1}{16}, 0)$
- Eigenvalue of Jacobian:

$$
\lambda_1 = -1 < 0,
$$
\n
$$
\lambda_2 = -2a + 0.5i,
$$
\n
$$
\lambda_3 = -2a - 0.5i.
$$

• So, *a* > 0 (stable); *a* < 0 (unstable)

Simulation

stable equilibrium points $a = 0.005 > 0$

Simulation

unstable equilibrium points $a = -0.01 < 0$

Example

$$
\mathbb{R}_y(\frac{2}{3}\pi) \quad \begin{cases} u = x^3 - 3xz^2 \\ v = y \end{cases}
$$
 local diffeomorphism

$$
\begin{cases} \dot{u} = vw + a \\ \dot{v} = u^2 - v \\ \dot{w} = 1 - 4u. \end{cases}
$$

$$
\begin{cases} \dot{x} = \frac{1}{3} \frac{3 x^4 z y - 4 x^2 z^3 y + x^2 a - 8 x^4 z + 2 z x + 24 x^2 z^3 + z^5 y - z^2 a}{2 x^2 z^2 + x^4 + z^4} \\ \dot{y} = (x^3 - 3xz^2)^2 - y \\ \dot{z} = -\frac{1}{3} \frac{6 z^2 x^3 y - 2 z^4 xy + 2 z x a + 4 x^5 - x^2 - 16 z^2 x^3 + z^2 + 12 z^4 x}{2 x^2 z^2 + x^4 + z^4}. \end{cases}
$$

Simulation

 $a = 0.005 > 0$ (stable)

Simulation

 $a = -0.01 < 0$ (unstable)

One more example:

Now, theoretically one can create any number of equilibrium points

Existence of Chaotic Attractors

Shilnikov Theorem (1967):

If a 3D autonomous system has two distinct saddle equilibrium points and there exists a heteroclinic orbit connecting them, and if the eigenvalues of the Jacobin of the system at these fixed points are

 α_k , $\beta_k \pm j\omega_k$ ($k = 1,2$)

Satisfying $|\alpha_k| > |\beta_k| > 0$ ($k = 1,2$) and $\beta_1\beta_2 > 0$ or $\omega_1\omega_2 > 0$

then the system has infinitely many Smale horseshoes and hence has horseshoe chaos.

(a) Multiple heteroclinic orbit

(b) Multi-scroll attractors

Multi-Equilibrium/Multi-Scroll Attractors in Nature

-Thank You!

