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Stability of fixed point in conservative and
non-conservative systems
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Stability of fixed point in conservative and
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Stability of fixed point in conservative and
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Limit cycle oscillator: Stuart-Landau
oscillator
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Symmetry: Anti-PT symmetry
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Complete synchronization of coupled
Identical chaotic oscillators
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Oscillation quenching mechanisms:
Amplitude vs. oscillation death
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Coupled counter-rotating identical Stuart-
LLandau oscillators

Coupled co-rotating non-identical Stuart-Landau oscillators
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Ryu et al., Phys. Rev. E 91, 052910 (2015)



Coupled counter-rotating identical Stuart-
LLandau oscillators

Coupled co-rotating non-identical Stuart-Landau oscillators
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Coupled counter-rotating identical Stuart-
LLandau oscillators
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Coupled counter-rotating identical Stuart-
LLandau oscillators
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Coupled counter-rotating identical Stuart-
andau oscillators
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FIG. 2: (color online) The final steady states of oscillation
death when (a) £ = 0.6 and (b) £ = 1.0 with w = 0.5. The
circles and crosses denote the steady states of first and second
oscillators. The different color represents the different initial
points. The angular phases of final states 8/ of (¢) first and (d)
second oscillators as a function of the initial angular phases
91,2.



Noise effect on neutrally stable OD states
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FIG. 4: (color online) (a) Angular phases of two oscillators
when £ = 0.6 and & = 1.0 with w = 0.5. Black and red
trajectories represent angular phases of first and second os-
cillators, respectively, when k& = 0.6. Green and blue trajec-
tories represent angular phases of first and second oscillators,
respectively, when £ = 1.0. (b) The phase difference between
two oscillators when k& = 0.6 (black) and & = 1.0 (green),
respectively.
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Experimental
Implementation

PHYSICS

Anti-parity-time symmetry
in diffusive systems

Ying Li'*, Yu-Gui Peng"?*, Lei Han"**, Mohammad-Ali Miri*®, Wei Li®, Meng Xiao®”7,
Xue-Feng Zhu?t, Jianlin Zhao®, Andrea Alu*®%'°, Shanhui Fan®t, Cheng-Wei Qiu't

Various concepts related to parity-time symmetry, including anti—-parity-time symmetry,
have found broad applications in wave physics. Wave systems are fundamentally
described by Hermitian operators, whereas their unusual properties are introduced

by incorporation of gain and loss. We propose that the related physics need not be
restricted to wave dynamics, and we consider systems described by diffusive dynamics.
We study the heat transfer in two countermoving media and show that this system
exhibits anti—-parity-time symmetry. The spontaneous symmetry breaking results in a
phase transition from motionless temperature profiles, despite the mechanical motion
of the background, to moving temperature profiles. Our results extend the concepts

of parity-time symmetry beyond wave physics and may offer opportunities to manipulate
heat and mass transport.

Li et al., Science 364, 170-173 (2019)
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Summary and Discussions

* We have found the new type of oscillation suppression in coupled counter-rotating
Identical nonlinear oscillators, of which steady states are neutrally stable.

 The neutral stability of the oscillation death is originated from the anti-PT-symmetry of
the systems.

« We expect that new emergent states related to the conservative properties such as neutral
stability in dissipative nonlinear systems can be generated by the symmetry recovered by
spontaneous symmetry breaking of PT-symmetry such as anti-PT-symmetry of this work.

- Ryu et al., Phys. Rev. E 100, 022209 (2019).



Coupled counter-rotating identical Stuart-

| andau oscillators
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FIG. 3: (color online) (a) Real and (b) imaginary parts of two
elgenvalues of M as a function of £ when w = 0.5. EP occurs
when k = 0.5. (c) Difference between two real parts (black
line) and periods (red circles) of the oscillations as a function

of k.



