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Granular Chute Flow



The “chute” may also be  a mountainside: 



In the laboratory:
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An important player:

the Froude number

measures the relative importance of the

inertial forces   vs.  the gravitational force
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Saint-Venant equations

for granular chute flow
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Mass conservation:

Momentum balance:
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Basic solution: steady uniform flow
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gravity vs.  friction

  0t xh hu  Mass conservation:

Momentum balance:

trivially satisfied

balance of two forces Stable for β < F < 2/3



For the same range of F
also the combination of uniform flows is stable

To illustrate this, we perform a numerical experiment 
with these initial conditions  h(x,0) and  ū(x,0)
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ū (x,t )   [m/s]h (x,t )   [m]

The flow spontaneously organizes itself
in the form of a traveling monoclinal wave.
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wave speed:
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Wave speed:

For an observer in the co-moving frame,

u c  u c 

( )h u c    ( )h u c  

the flux of material leaving the shock zone 

must be equal to the flux  

entering the shock zone: 

‒‒ 0.38 m/s ‒‒ 0.45 m/s 

c
u

u

h u h u

h h

   

 






h_

h+

= 0.70 m/s



Balance of forces: 

Main contributors:  gravity & friction

Much smaller: pressure gradient & inertial forces

Still smaller:  viscous force
(yet very important, as we will see)



Traveling wave analysis

We introduce the traveling-wave variable
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and are interested in solutions of the form

The mass conservation then becomes:

  0
dh d

c hu
d d 

    ' ' 0ch hu  or:



ch hu K    

h (ū ‒ c) is the constant flux of material 

observed in the co-moving frame

integration
constant

With this ( and hence , etc.) 

we can eliminate ū  and its derivatives  from the 

momentum balance 

This can be integrated immediately:
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This 2nd order ODE for h(ξ), 
with the proper boundary conditions,

governs all traveling waveforms on the chute:  

Note that in the absence of viscosity (ν = 0)

the ODE would only be of 1st order.
!



Dynamical Systems approach
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or non-dimensionally: with all length scales measured in units of

the thickness h_ of the incoming stream

s denotes the slope of h(ξ)
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Fixed points:
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fixed points correspond to 
flat regions of the flow!  

… and their stability:
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of the Jacobian matrix



Eigenvalues for the two fixed points: 
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More  versatile:
(1, 0) can be any type 

of fixed point, depending 
on the system parameters.  

Real and of-opposite-sign
for all relevant values of 
the system parameters.

 So ( , 0) is a saddle.
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Fixed point (1,0) depending on  F and       :
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Typical path through the parameter diagram,
crossing the critical value F = 2/3
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Eigenvalues of (1,0) along the path:

(ζ = 33.3 degrees)



unstable node
saddle

heteroclinic

connection

=  monoclinal wave
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(1,0)  becomes 

an unstable spiral

The heteroclinic

connection  now

spirals around

 undular bore

(1,0)

h


1h 


2nd

new

granular

waveform

Stage 2:

2



a saddle-loop 

bifurcation!
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Intermediate event:

The saddle-loop 
corresponds to a 
solitary roll wave



The saddle-loop has 

evolved into a stable 

limit cycle

…, corresponding to a 

periodic train of roll waves:

This is the stable 
waveform for all  

F > 2/3
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Stage 3:



The next stages are mathematically interesting 
(involving a Hopf bifurcation etc.) but yield only 

unstable waveforms.



So we arrive at the following transition scenario:
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wave
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Conclusion

D.  The challenge is now to verify this in experiment. Roll waves

C.  For growing F, we predict the transition

monoclinal wave   undular bore   roll waves

A. The Dynamical Systems approach is a powerful 
tool for analyzing the waves that may be 
encountered in granular chute flow.

B. It has revealed a whole spectrum of waveforms  
that were hitherto unknown in granular flow: 
● monoclinal flood wave   ● undular bore  
● solitary roll wave,  ● and various unstable ones.



The  End


