Granular Waves: The Dynamical Systems Approach

Ko van der Weele

University of Patras Greece

Based on the following papers:

- D. Razis, G. Kanellopoulos, and K. van der Weele, *A dynamical systems view of granular flow: from monoclinal flood waves to roll waves*, J. Fluid Mech. **869**, 143-181 (2019).
- D. Razis, G. Kanellopoulos, and K. van der Weele, *The granular monoclinal wave*, J. Fluid Mech. **843**, 810-846 (2018).
- D. Razis, A.N. Edwards, J.M.N.T. Gray, and K. van der Weele, *Arrested coarsening of granular roll waves,* Phys. Fluids **26**, 123305 (2014).

Granular Chute Flow

The "chute" may also be a mountainside:

rock avalanche paths

In the laboratory:

height of the sheet $h(x,t)$ depth-averaged velocity $\overline{u}(x,t)$

Depth-averaged velocity:

$$
\overline{u}(x,t) = \frac{1}{h(x,t)} \int\limits_{0}^{h(x,t)} u(x,z,t) dz
$$

An important player: the Froude number

$$
F = \frac{\overline{u}(x,t)}{\sqrt{h(x,t) \, g \cos \zeta}}
$$

measures the relative importance of the inertial forces vs. the gravitational force

Saint-Venant equations for granular chute flow

Mass conservation:
$$
\partial_t h + \partial_x (h\overline{u}) = 0
$$

Momentum balance:

Momentum balance:		
$\partial_t (h\overline{u}) + \partial_x (h\overline{u}^2) =$		
$g h \sin \zeta - \mu(h, \overline{u}) gh \cos \zeta - \frac{1}{2} \partial_x (gh^2 \cos \zeta) + \nu(\zeta) \partial_x (h^{3/2} \partial_x \overline{u})$		
friction with	friction	
gravity	the chute	gradient of
component	component	dependent
in x-direction	Porterre	depth-averaged
in x-direction	Gray & Edwards,	
JFM 453 (2002)	IFM 755 (2014)	

Basic solution: steady uniform flow h_{α} gravity U_{o} **Mass conservation:** $\partial_t h + \partial_x (h\overline{u}) = 0$ trivially satisfied **Momentum balance:**
 ∂ $\left(\hbar \overline{u}\right) + \partial$ $\left(\hbar \overline{u}^2\right) =$ **Momentum balance:** $\mathscr{L}(h\overline{u}) + \partial \mathscr{L}(h\overline{u}^2) =$
gh sin $\zeta - \mu(h, \overline{u}) gh \cos \zeta - \frac{1}{2} \partial \mathscr{L}(gh^2 \cos \zeta) + v(\zeta) \partial \mathscr{L}(h^{3/2} \partial_x \overline{u})$ $(h\overline{u}) + \partial \sqrt{h\overline{u}^2})$ $\frac{1}{2} \partial_x (gh^2 \cos \zeta) + v(\zeta) \partial_x (h^{3/2} \partial_x \overline{u})$ 2 **gravity vs. friction balance of two forces Stable for** $\beta < F < 2/3$

For the same range of *F* **also the combination of uniform flows is stable**

The flow spontaneously organizes itself in the form of a traveling **monoclinal wave**.

Dimitrios Razis¹, Giorgos Kanellopoulos^{1,2} and Ko van der Weele^{1,†}

wave speed: $c = 0.70$ m/s

Wave speed:

Balance of forces:

Traveling wave analysis

We introduce the traveling-wave variable

$$
\xi = x - ct
$$

and are interested in solutions of the form

$$
h(x,t) = h(x-ct) = h(\xi)
$$

$$
\overline{u}(x,t) = \overline{u}(x-ct) = \overline{u}(\xi)
$$

The mass conservation then becomes:

$$
-c\frac{dh}{d\xi} + \frac{d}{d\xi}\left(h\overline{u}\right) = 0
$$

$$
\left(\text{or: } -c\,h' + \left(h\overline{u}\,\right) = 0\right)
$$

This can be integrated immediately:

$$
-c h' + (h\overline{u})' = 0 \implies -ch + h\overline{u} = K
$$
 integration constant
h(\overline{u} - c) is the constant flux of material observed in the co-moving frame

With this ($\overline{u} \ = \ c - K \, h^{-1}$ and hence $\ \overline{u}^{\; \prime} \ = \ K \, h^{-2} h^{\; \prime}$, etc.) we can eliminate *ū* and its derivatives from the $\overline{u} = c - K h^{-1}$ and hence \overline{u} ⁺ = $K h^{-2} h$ ⁺ , which then takes the form

$$
\frac{vK}{h^{3/2}}h'' - \frac{vK}{2h^{5/2}}(h')^2 + \left(\frac{K^2}{h^3} - g\cos\zeta\right)h' + g\sin\zeta - \mu(h)g\cos\zeta = 0
$$

This 2nd order ODE for *h*(*ξ*), with the proper boundary conditions, governs *all* traveling waveforms on the chute:

$$
\frac{vK}{h^{3/2}}h'' - \frac{vK}{2h^{5/2}}(h')^{2} + \left(\frac{K^{2}}{h^{3}} - g\cos\zeta\right)h' + g\sin\zeta - \mu(h)g\cos\zeta = 0
$$

Dynamical Systems approach

The second-order ODE can be written as a system of 2 first-order equations:

or non-dimensionally: with all length scales measured in units of the thickness *h*_ of the incoming stream

$$
\begin{cases}\n\frac{d\tilde{h}}{d\tilde{\xi}} = \tilde{s} \\
\frac{d\tilde{s}}{d\tilde{\xi}} = \frac{\tilde{s}^2}{2\tilde{h}} - \frac{9\tilde{h}^{3/2}}{2\tan\zeta(\tilde{c}-1)} \left[\left(\frac{F_{in}^2(\tilde{c}-1)^2}{\tilde{h}^3} - 1 \right) \tilde{s} + \tan\zeta - \mu(\tilde{h}) \right]\n\end{cases}
$$

Fixed points:

fixed points correspond to **flat regions** of the flow!

$$
\begin{cases}\n\frac{d\tilde{h}}{d\tilde{\xi}} = 0 \longrightarrow f(\tilde{s}) = \tilde{s} = 0 \\
\frac{d\tilde{s}}{d\tilde{\xi}} = 0 \longrightarrow g(\tilde{h}, \tilde{s}) = g(\tilde{h}, 0) = 0 \\
\to \text{two fixed points: } \boxed{(\tilde{h}_+, 0)} \text{ and } (\tilde{h}_-, 0) = (1, 0)\n\end{cases}
$$

determined by the eigenvalues of the Jacobian matrix

... and their stability: determined by the eigenvalues
\nof the Jacobian matrix
\n
$$
J = \begin{pmatrix} \frac{\partial f(\tilde{s})}{\partial \tilde{h}} & \frac{\partial f(\tilde{s})}{\partial \tilde{s}} \\ \frac{\partial g(\tilde{h}, \tilde{s})}{\partial \tilde{h}} & \frac{\partial g(\tilde{h}, \tilde{s})}{\partial \tilde{s}} \end{pmatrix}_{(\tilde{h}_\pm, 0)} = \begin{pmatrix} 0 & 1 \\ \frac{\partial g(\tilde{h}, \tilde{s})}{\partial \tilde{h}} & \frac{\partial g(\tilde{h}, \tilde{s})}{\partial \tilde{s}} \end{pmatrix}_{(\tilde{h}_\pm, 0)}
$$

Eigenvalues for the two fixed points:

$$
\boxed{(\tilde{h}_{_+},0)}
$$

$$
\lambda_{a,b}^{(\tilde{h}_{+},0)}(\tilde{h}_{+},F,\zeta) \qquad \lambda_{a,b}^{(1,0)}
$$

$$
\widehat{(\tilde{h}_-,0)} = (1,0)
$$

$$
\lambda^{(1,0)}_{a,b}~(\tilde h_+, F, \zeta)
$$

Real and of-opposite-sign for all relevant values of the system parameters.

$$
\rightarrow \text{ So } (\tilde{h}_{+}, 0) \text{ is a saddle.}
$$

More versatile: $(1, 0)$ can be *any* type of fixed point, depending on the system parameters.

Fixed point $(1,0)$ depending on F and h_{+} : \tilde{h}

Eigenvalues of (1,0) along the path:

(*ζ* = 33.3 degrees)

Stage 1:

 \sim

S

heteroclinic connection = monoclinal wave *h* \tilde{h}

 $h_{\scriptscriptstyle +}$

Stage 3:

The saddle-loop has evolved into a stable

limit cycle

…, corresponding to a periodic train of roll waves:

This is the stable waveform for all $\begin{array}{|l|l|}\n\hline\n\text{is the stable}\n\hline\n\text{eform for all}\n\end{array}\n\quad\n\begin{array}{|l|}\n\hline\n\text{F} > 2/3\n\hline\n\end{array}\n\quad\n\begin{array}{|l|}\n\hline\n\text{F} > 2/3\n\hline\n\end{array}\n\quad\n\begin{array}{|l|}\n\hline\n\text{F} > 2/3\n\hline\n\end{array}\n\quad\n\begin{array}{|l|}\n\hline\n\text{F} > 2/3\n\hline\n\end{array}\n\quad\n\begin{array}{|l|}\n\hline\n$

h \tilde{h}

The next stages are mathematically interesting (involving a Hopf bifurcation etc.) but yield only unstable waveforms.

So we arrive at the following transition scenario:

Conclusion

- A. The **Dynamical Systems** approach is a powerful tool for analyzing the waves that may be encountered in granular chute flow.
- B. It has revealed a whole **spectrum of waveforms** that were hitherto unknown in granular flow:
	- monoclinal flood wave undular bore
	- solitary roll wave, and various unstable ones.
- C. For growing *F*, we predict the **transition monoclinal wave** \rightarrow **undular bore** \rightarrow **roll waves**
- D. The challenge is now to verify this **in experiment**.

The End