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1. Stellarators

Figure: Some stellarators: Spitzer, HSX

Magnetic confinement devices for plasma (ionised gas), in which
the magnetic field rotates around a closed field line because of
non-trivial 3D geometry.
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Figure: Schematic of Wendelstein 7X

In contrast to tokamaks, which are near axisymmetric but require a
strong toroidal current to make the field rotate around a central
fieldline; this current causes instabilities and needs driving.

Catch with stellarators is that they need more careful design to
confine the plasma, but this makes interesting mathematics.



Magnetic confinement of charged particles

To leading order in mv?/e|B|, charged particles in a magnetic field
B describe helices around a fieldline.

Write position g and velocity v in terms of a guiding centre (GC)
X, gyroradius vector p L b= B/|B|, and parallel velocity vj:

v = %B(X) x p+vb(X), qg=X+np.

p rotates at gyro-frequency 2z = e|B|/m and magnetic moment
p = mv?/2|B| is an adiabatic invariant.



Zeroth-order GC motion (ZGCM): X moves along a fieldline at
velocity v, conserving H = %VHQ + p|B(X)], so circulating in one
direction if energy H is large enough, else bouncing at places where
|B] = H/p

At first order, X drifts across non-uniform B, but can confine it by
various designs.

In particular, if GC motion has another integral K, independent of
H, with bounded joint level sets, then GCs are confined (ignoring
their interactions).

This is equivalent to having a continuous symmetry u and a
topological condition to make K single-valued. u is called a
quasi-symmetry (g-s).

Axisymmetry would do, but to make the joint level sets bounded
requires toroidal current.



Hamiltonian formulation

State space {(X,v|) : X € R?,vj € R}. Inner product - and
compatible x and volume form Q on R3.

Hamiltonian H = 3mv{ + 1| B(X)|.

Symplectic form w = ef3 + d(mv”b"),
where 8 = igQ, i.e. B(€,n) = Q(B,&,n), and b(€) = b- €.

Defines first-order GC motion (FGCM) Hamiltonian vector field V
by iyw = dH.

Produces usual Littlejohn drift equations

) . B
X=wB+Ebxv|B)/B, w=-L2.v|B|
18+5 I M="0E

where B = B + %v”c, with ¢ = curlb.



Theorem [Burby, Kallinikos, M, arXiv:1912.06468]

Theorem: (u,0) is a quasi-symmetry of FGCM for all p iff
Ly|B| =0,L,8=0,L,8" =0,

where L, is the Lie derivative along u. In vector calculus,
u-V|B|=0,curl(Bxu)=0,uxJ=V(u-B), with J = curlB.
Furthermore,

curl(B x u) = 0= B x u= V1) for some local function v;

if ¥ is global then FGCM has integral K = —e¢) — mvju - b;

conservation of H&K implies the value of 9 at the GC cannot
change much for moderate energies, hence confinement.



Can g-s be achieved (apart from axisymmetry)?:
Are there Kovalevskaya examples?
Or does every g-s have to be a Killing field, L,g = 07

Perhaps approximate g-s suffices, especially as FGCM is only first
order.

Or weaker designs, e.g., omnigenity: B - Vi =0, () = 0 for
FGCM averaged along ZGCM.

Or "property X": L = f,y eA’ + mv”bb along closed orbits ~ of
ZGCM is constant on the set of internal tangencies: B - V|B| =0,
D?|B|(B, B) < 0.

Or for non-interacting GCs, one invariant torus for each value of
(u, H) suffices.



2. Region occupied by invariant tori

KAM theory gives sufficient conditions for existence of invariant
tori and bounds on where they are, but it is hard.

Much easier is Converse KAM theory, sufficient conditions for
non-existence of invariant tori of given class through a given region.

e.g. | used this in 1983 to make a computer-assisted proof that the
standard map has no rotational invariant circles for all k > 63/64.

I've adapted the method to establish regions through which pass
no invariant tori transverse to a given foliation.

Plan to apply it to FGCM for some example magnetic fields.
But in the meantime, applied it to the planar circular restricted
3-body problem, with Tom Syndercombe.



Simple example: Pendulum

1
H(0,p) = §p2 — cosf.

H > 1: Rotational invariant tori, transverse to foliation F, 6 = cst.
Orbit of upward tangent to F cannot cross the tangent to the
torus so cannot cross the downward tangent to F.

H < 1: Librational invariant tori. Can tell they are not on invariant
tori transverse to F because the orbit of upward tangent to F
crosses the downward tangent after some time.

We will use a 2DoF extension of this idea: M, RegChDyn 23 (2018)
797; building on M&Percival CMP (1985), M Phys.D (1989).



Planar Circular Restricted Three-Body Problem

Two masses 1 — i and g, in circular orbits round their centre of
mass, separation 1, frequency 1.

Coordinates (x, y) in rotating frame, masses at (—x,0) and

(1 — p,0).

Asteroid/planet of (relatively) negligible mass in their plane of
rotation. Want to know where it can orbit “stably”.

Let p, K, L be its momentum, energy and angular momentum (per
unit mass) in the instantaneous inertial frame:
I—p  p

1
K=ZlpP-—=-5, L=xp, —
2‘p| rn r27 Xpy pr7

where ri, r» are the distances to the primaries.

Then the motion in the rotating frame is given by Hamilton's
equations for H = K — L. In particular, H is conserved and its
value is denoted —C/2 with C called the Jacobi constant.



Invariant tori for =0
When p =0, H is integrable, with integrals K and L.
The bounded regular level sets are 2-tori (points on Kepler ellipses
with the same semi-major axis a, eccentricity e and orientation).
The motion on them is quasiperiodic: m = N=3, g = —1, where m
is 27 times fraction of area of ellipse swept out from pericentre, g
is angle of pericentre, and N = o/v/—2K = o+/a is principal
quantum number, with o = sign L.

The tori are pr+L2/r —2L - 2/r——Cfor L 2<K<0

Figure: Invariant tori for L = 1 and Transverse foliation by g =cst.



Transverse foliation

The tori are transverse to the foliation F: g = cst, § = cst,
because (L, N, g,0) form a local coordinate system.

The tori have frequency ratio p = —g/m = N3.

By KAM theory, sufficiently irrational tori persist for some range
0 < pu < pe(p,L). They also remain transverse to F for p small
enough: (L, N) is a C! function of (g, ). (Or for fixed p1, KAM

theory applies for i, = N2(1 — /1 — L2/N2) large enough)

g is the direction of the Laplace vector e = p x LZ — T, i.e. solution
of ecosg = p,L — x/r,esing = —pxL — y/r with e > 0.
Restricting to H = —C/2, F becomes 1D and we choose a

continuous field of tangent vectors & to it (except at e = 0 where
F is singular), so that dL £ > 0 (except on L = 0).

We choose a 1-form () so that A = dL + ¢ satisfies A £ > 0 and
A v =0, where v is the Hamiltonian vector field.



Non-existence condition
If 3 invariant torus T through s(0) € H=1(—C/2) transverse to F,
take £(0) = &5(0) and simultaneously evolve s(t) using dynamics
s = v(s) and £(t) using the linearised dynamics £ = Dvgp€. Then
&(t) must stay on the same side of T. In particular, we can never
have §(t), &s(r) Vs(¢) linearly dependent with A £(t) < 0.

&(t), &s(t)s Vs(¢) linearly independent in a regular energy level iff
w(&(t),&s(r)) # 0, for w = dx A dpx + dy A dp, (take Q = % Aw).

So if 3t s.t. w(&(t),&s(r)) changes sign and A £(t) < 0 (“negative
crossing” ) then 3 invariant torus through s(0) transverse to F.

In practice, reduce dimension of search space from 4to 3 or 2 ...



Surface of section
Enough to test initial conditions on a transverse codimension-1 set
> such that every bounded trajectory crosses it.
Every bounded trajectory comes to a local maximum of r, so take
Y ={s:p, =0,p <0}. For u =0 thisis r > L2.
[Note additional non-existence criterion: if s(t) never returns to *
then it is not on an invariant torus (of any class).]

H conserved: ¥¢c = ¥ N H™1(—~C/2). For u = 0, use coordinates
(L,0); allowed region 2L < C < 2L+ L=2 (1 or 2 annuli).

Figure: Allowed region in (L, C)



Symmetry planes
PCR3BP has time-reversal symmetry wrt 0 — —6, p, — —py,
r—r, L— L. Symmetry planes Py, Pr: p,=0,0=0,7
Every invariant torus transverse to F intersects Py, P, (> twice).

Maybe enough to look on them.

For 1 small, expect tori destroyed by crossing orbit of secondary

2 2r — N3
(r>1,L% <75, or v.v) or near resonances p = N° € Q.

Figure: Curves delimiting crossing of r = 1, and some resonances, in a
symmetry plane for ;= 0; escape for L2 > 2r; circular for 2 = r



Numerics: Example orbit

, Orbitfor C=3.1485, mu=0.3, Initial (x.y,pxpy)=[2.6 0 0 0.5]
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Figure: An orbit with a negative crossing



Symmetry plane Py

N Crossings for (r.L) plane, initial theta = 0, pr = 0, mu = 0.01
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Figure: Results for ¢ = 0.01 in symmetry plane p, = 0,0 = 0; superposed
curves for = 0 are r = L2 for circular orbits, 2r = L2 for parabolic

orbits, (p=2/3r —1)2 =1— p=2/312 for |p| = %,% a0 E 1 % ‘;, 3,2 3,4,5
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Discussion

Dominant effect producing non-existence seems to be crossing
orbit of secondary.

Foliation degenerates on the circular orbits, so expect
non-existence near r = L2, because even though there are invariant
tori around the continuation of the circular orbits the thinnest ones
are not transverse to the foliation.

Expect resonance to be important only for orbits that do not cross
r=1 Thisis r > 1, rirl < L2 < 2r, where Kepler ellipses remain

inr>10orr<1,12< where they remain in r < 1.

r+1'
Even then, resonances might not show up for one or other choice
of symmetry plane. Indeed, surface of section plot suggests that
they do not show up in 8 = 0 and some are missing in 6 = 7.



Surface of section plot

Surface of Section Diagram for C=3.2, mu=0.1

Theta

Figure: Surface of section plot (p, = 0,p, < 0) for C =3.2,u=0.1

Periodic orbits of Maslov index 0 do not experience negative
crossings. So # = 0 is not a good choice for this method; § = 7 is
better but still intersects some periodic orbits of Maslov index 0.



Symmetry plane P;

Crossings for(r,L) plane,

Initial L

Initial r

Figure: Plane 8§ = 0 for = 0.9, equivalent to § = 7 for u = 0.1

So need a better symmetry plane (perhaps where return map =
reflection) or “killends” extension of method.



Killends

Step 1: Integrate from &) to vector &' at 5(0) for t € [T, T].
Let £t be the quotient by Rv(s(0)), and S be the set of directions
of £, t € [~ T, T]. If 3 invariant torus 7 through s(0) transverse
to F then SN (—S) = 0. So if non-empty there is no such torus.

Step 2: Take a transverse section X to v; do step 1 for all its
points. Then tangent 7 to X N7 is in complement C to SU (-S5).
If integrating the differential inclusion 7 € C in one direction from
a point forces termination in the set where C = () then C at that
point can be set to empty (and at all points reached on the way).
More efficient to work outwards from the set where-C = ().



lllustration of killends for standard map
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Fig. 7. Same as Fig. 6 after application of subsidiary criterion

Fig. 6. Conefield for rotational invariant circles of the standard map at k~1.05. No circles pass

through the black regions
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Extensions

Better coordinates to plot symmetry planes for PCR3BP are
L' = r—LQ, r = % because non-escape region is L' < 2, circular
orbits is L’ =1, and r’ compactifies (0, 00) to (0,2) preserving 1.
Can apply to different foliations adapted to different classes of tori
in different regions of phase space. Particularly interesting in the
PCR3BP would be a foliation adapted to invariant tori surrounding
the secondary mass, to determine sphere of influence.

Or even to a single foliation (with singularities) to cover all classes
of tori, e.g. for pendulum could use gradient curves of H (has been
applied by Duignan&Meiss to extend results of MacKay, Physica D
36 (1989) 64 for the two-wave Hamiltonian). Separate the classes

using the singularities of the foliation. Best to regularise collisions

with the primaries first.

All extends to more DoF for Lagrangian tori transverse to a
Lagrangian foliation (cf. M,Meiss&Stark, Nonlin 2 (1989) 555, and
correspondence with Robbins years ago about Maslov cycle).



3. Conclusion

Have presented the use of Hamiltonian dynamics to design
magnetic fields in which guiding centre motion is integrable.

And a method to establish regions of phase space through which
pass no invariant tori of given class.

If someone good at numerics for Hamiltonian systems would like to
come and implement the non-existence criterion for FGCM in some
example magnetic fields, let me know.
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