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1. Stellarators
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Figure: Some stellarators: Spitzer, HSX

Magnetic confinement devices for plasma (ionised gas), in which
the magnetic field rotates around a closed field line because of
non-trivial 3D geometry.



Example	of	very	nonaxisymmetric		
magne)c	confinement:		Wendelstein	7-X	(Germany)	
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Figure: Schematic of Wendelstein 7X

In contrast to tokamaks, which are near axisymmetric but require a
strong toroidal current to make the field rotate around a central
fieldline; this current causes instabilities and needs driving.

Catch with stellarators is that they need more careful design to
confine the plasma, but this makes interesting mathematics.



Magnetic confinement of charged particles

To leading order in mv2/e|B|, charged particles in a magnetic field
B describe helices around a fieldline.

v⟂

v‖

B

X

e-γ

Write position q and velocity v in terms of a guiding centre (GC)
X , gyroradius vector ρ ⊥ b = B/|B|, and parallel velocity v‖:

v =
e

m
B(X )× ρ+ v‖b(X ), q = X + ρ.

ρ rotates at gyro-frequency Ωg = e|B|/m and magnetic moment
µ = mv2⊥/2|B| is an adiabatic invariant.



Zeroth-order GC motion (ZGCM): X moves along a fieldline at
velocity v‖, conserving H = 1

2v
2
‖ + µ|B(X )|, so circulating in one

direction if energy H is large enough, else bouncing at places where
|B| = H/µ.

At first order, X drifts across non-uniform B, but can confine it by
various designs.

In particular, if GC motion has another integral K , independent of
H, with bounded joint level sets, then GCs are confined (ignoring
their interactions).

This is equivalent to having a continuous symmetry u and a
topological condition to make K single-valued. u is called a
quasi-symmetry (q-s).

Axisymmetry would do, but to make the joint level sets bounded
requires toroidal current.



Hamiltonian formulation

State space {(X , v‖) : X ∈ R3, v‖ ∈ R}. Inner product · and
compatible × and volume form Ω on R3.

Hamiltonian H = 1
2mv2‖ + µ|B(X )|.

Symplectic form ω = eβ + d(mv‖b[),

where β = iBΩ, i.e. β(ξ, η) = Ω(B, ξ, η), and b[(ξ) = b · ξ.

Defines first-order GC motion (FGCM) Hamiltonian vector field V
by iVω = dH.

Produces usual Littlejohn drift equations

Ẋ = (v‖B̃ +
µ

e
b ×∇|B|)/B̃‖, v̇‖ = − µ

m

B̃

B̃‖
· ∇|B|,

where B̃ = B + m
e v‖c , with c = curlb.



Theorem [Burby, Kallinikos, M, arXiv:1912.06468]

Theorem: (u, 0) is a quasi-symmetry of FGCM for all µ iff

Lu|B| = 0, Luβ = 0, LuB
[ = 0,

where Lu is the Lie derivative along u. In vector calculus,
u · ∇|B| = 0, curl(B × u) = 0, u × J = ∇(u · B), with J = curlB.

Furthermore,

curl(B × u) = 0⇒ B × u = ∇ψ for some local function ψ;

if ψ is global then FGCM has integral K = −eψ −mv‖u · b;

conservation of H&K implies the value of ψ at the GC cannot
change much for moderate energies, hence confinement.



Can q-s be achieved (apart from axisymmetry)?:
Are there Kovalevskaya examples?
Or does every q-s have to be a Killing field, Lug = 0?

Perhaps approximate q-s suffices, especially as FGCM is only first
order.

Or weaker designs, e.g., omnigenity: B · ∇ψ = 0, 〈ψ̇〉 = 0 for
FGCM averaged along ZGCM.

Or “property X”: L =
∫
γ eA

[ + mv‖b[ along closed orbits γ of

ZGCM is constant on the set of internal tangencies: B · ∇|B| = 0,
D2|B|(B,B) < 0.

Or for non-interacting GCs, one invariant torus for each value of
(µ,H) suffices.



2. Region occupied by invariant tori

KAM theory gives sufficient conditions for existence of invariant
tori and bounds on where they are, but it is hard.

Much easier is Converse KAM theory, sufficient conditions for
non-existence of invariant tori of given class through a given region.

e.g. I used this in 1983 to make a computer-assisted proof that the
standard map has no rotational invariant circles for all k ≥ 63/64.

I’ve adapted the method to establish regions through which pass
no invariant tori transverse to a given foliation.

Plan to apply it to FGCM for some example magnetic fields.
But in the meantime, applied it to the planar circular restricted
3-body problem, with Tom Syndercombe.



Simple example: Pendulum

H(θ, p) =
1

2
p2 − cos θ.

H > 1: Rotational invariant tori, transverse to foliation F , θ = cst.
Orbit of upward tangent to F cannot cross the tangent to the
torus so cannot cross the downward tangent to F .

H < 1: Librational invariant tori. Can tell they are not on invariant
tori transverse to F because the orbit of upward tangent to F
crosses the downward tangent after some time.

Let us now take a foliation along ✓ = constant. We can see that the tori (grey lines) not

contained in the region bounded by the stable/unstable manifold always remain transverse

to the foliation direction. Meanwhile, the tori within the region bounded by the stable

and unstable manifold become tangent to the foliation at some point.

Let us now apply the method to (hopefully) recover these results. We can take an initial

’vertical’ in the direction of the tangent to the foliation and evolve it according to the

vector field. As can be seen on Figure 2, the tangent at point (a) is continually stretched

but will never cross the foliation direction again. Meanwhile the tangent foliation for point

(b) evolves such that there is a crossing of the foliation with opposite sign. This crossing

is exactly what we are looking for as it identifies (b) as not lying on an invariant torus

transverse to the foliation.

Figure 2: Phase-space diagram as in Figure 1, with foliation in ✓=cst shown. Also dis-
played are the evolution of two points and their tangents vectors.

We can also surmise that this should be true for all points within the region bounded by

the stable/unstable manifold (the innermost region of the diagram) as all tangents evolve

around to cross with opposite sign. The method has therefore confirmed our hypothesis

and identified the innermost region as being free of tori transverse to ✓ = cst. Note

also that the method cannot draw a conclusion for points in the outer region. While no

crossing has been identified, this does not imply the existence of an invariant torus. A

stronger version of the method, calculated for infinite time with additional conditions, can

guarantee existence of invariant tori in these regions, as demonstrated by Stark. [11]
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We will use a 2DoF extension of this idea: M, RegChDyn 23 (2018)
797; building on M&Percival CMP (1985), M Phys D (1989).



Planar Circular Restricted Three-Body Problem

Two masses 1− µ and µ, in circular orbits round their centre of
mass, separation 1, frequency 1.

Coordinates (x , y) in rotating frame, masses at (−µ, 0) and
(1− µ, 0).

Asteroid/planet of (relatively) negligible mass in their plane of
rotation. Want to know where it can orbit “stably”.

Let p,K , L be its momentum, energy and angular momentum (per
unit mass) in the instantaneous inertial frame:

K =
1

2
|p|2 − 1− µ

r1
− µ

r2
, L = xpy − ypx ,

where r1, r2 are the distances to the primaries.

Then the motion in the rotating frame is given by Hamilton’s
equations for H = K − L. In particular, H is conserved and its
value is denoted −C/2 with C called the Jacobi constant.



Invariant tori for µ = 0
When µ = 0, H is integrable, with integrals K and L.

The bounded regular level sets are 2-tori (points on Kepler ellipses
with the same semi-major axis a, eccentricity e and orientation).

The motion on them is quasiperiodic: ṁ = N−3, ġ = −1, where m
is 2π times fraction of area of ellipse swept out from pericentre, g
is angle of pericentre, and N = σ/

√
−2K = σ

√
a is principal

quantum number, with σ = sign L.

The tori are p2r + L2/r2 − 2L− 2/r = −C for −1
2L
−2 < K < 0.
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Figure: Invariant tori for L = 1 and Transverse foliation by g =cst.



Transverse foliation

The tori are transverse to the foliation F : g = cst, θ = cst,
because (L,N, g , θ) form a local coordinate system.

The tori have frequency ratio ρ = −ġ/ṁ = N3.

By KAM theory, sufficiently irrational tori persist for some range
0 ≤ µ < µc(ρ, L). They also remain transverse to F for µ small
enough: (L,N) is a C 1 function of (g , θ). (Or for fixed µ, KAM
theory applies for rmin = N2(1−

√
1− L2/N2) large enough)

g is the direction of the Laplace vector e = p× Lẑ− r̂, i.e. solution
of e cos g = pyL− x/r , e sin g = −pxL− y/r with e ≥ 0.

Restricting to H = −C/2, F becomes 1D and we choose a
continuous field of tangent vectors ξ to it (except at e = 0 where
F is singular), so that dL ξ > 0 (except on L = 0).

We choose a 1-form ε(µ) so that λ = dL + ε satisfies λ ξ > 0 and
λ v = 0, where v is the Hamiltonian vector field.



Non-existence condition
If ∃ invariant torus T through s(0) ∈ H−1(−C/2) transverse to F ,
take ξ(0) = ξs(0) and simultaneously evolve s(t) using dynamics

ṡ = v(s) and ξ(t) using the linearised dynamics ξ̇ = Dvs(t)ξ. Then
ξ(t) must stay on the same side of T . In particular, we can never
have ξ(t), ξs(t), vs(t) linearly dependent with λ ξ(t) < 0.

ξ(t), ξs(t), vs(t) linearly independent in a regular energy level iff

ω(ξ(t), ξs(t)) 6= 0, for ω = dx ∧ dpx + dy ∧ dpy (take Ω = v[

|v |2 ∧ω).

So if ∃t s.t. ω(ξ(t), ξs(t)) changes sign and λ ξ(t) < 0 (“negative
crossing”) then @ invariant torus through s(0) transverse to F .

In practice, reduce dimension of search space from 4 to 3 or 2 . . .



Surface of section
Enough to test initial conditions on a transverse codimension-1 set
Σ such that every bounded trajectory crosses it.

Every bounded trajectory comes to a local maximum of r , so take
Σ = {s : pr = 0, ṗr < 0}. For µ = 0 this is r > L2.

[Note additional non-existence criterion: if s(t) never returns to Σ
then it is not on an invariant torus (of any class).]

H conserved: ΣC = Σ ∩ H−1(−C/2). For µ = 0, use coordinates
(L, θ); allowed region 2L ≤ C ≤ 2L + L−2 (1 or 2 annuli).
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Figure: Allowed region in (L,C )



Symmetry planes
PCR3BP has time-reversal symmetry wrt θ 7→ −θ, pr 7→ −pr ,
r 7→ r , L 7→ L. Symmetry planes P0,Pπ: pr = 0, θ = 0, π

Every invariant torus transverse to F intersects P0,Pπ (≥ twice).
Maybe enough to look on them.

For µ small, expect tori destroyed by crossing orbit of secondary
(r > 1, L2 < 2r

r+1 , or v.v) or near resonances ρ = N3 ∈ Q.
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Figure: Curves delimiting crossing of r = 1, and some resonances, in a
symmetry plane for µ = 0; escape for L2 > 2r ; circular for L2 = r



Numerics: Example orbit

Figure: An orbit with a negative crossing



Symmetry plane P0

correspond to legitimate crossings, or if the foliation degeneracies are entirely un-

related. Additionally, there may be invariant tori close to the circular orbits which

are not transverse to our foliation. An interesting direction for further study would

be to design a foliation centred on the near circular orbit to assist with identifying

crossings for regions around circular orbits.

Once again, we should therefore be wary of the crossings identified from near circular

orbits. An example of a such a crossing is included in Appendix A.5.

Figure 6: A copy of Figure 5 with resonance curves for ⇢ = {1
2 , 2

3 , 3
4 , 4

5 , 1, 5
4 , 4

3 , 3
2 , 2, 3, 4, 5}

overlaid in blue. Two black curves also mark the boundary of escape orbits (outer curve)
and the curve of circular orbits (inner curve).

8.5 Resonance Curves

The orbits that we would expect to be most a↵ected by µ 6= 0 are those with periods close

to some rational multiple of the system. The ratio of the orbital rotation rate compared

to the rotation rate of the frame is known as the ‘frequency ratio’ ⇢ of the system; if this

ratio is rational, we say that the orbit is in ‘resonance’. In our case, the coordinate axis

rotates at a unit rate and the particle’s rotation rate for µ = 0 is Ṁ = cst. Hence the

orbits that are in resonance are those that have rotation rate Ṁ being rational. For µ 6= 0

the rotation rate of each orbit will no longer remain constant, however we can still use

the resonant µ = 0 orbits to locate approximately where the new resonant orbits should

30

Figure: Results for µ = 0.01 in symmetry plane pr = 0, θ = 0; superposed
curves for µ = 0 are r = L2 for circular orbits, 2r = L2 for parabolic
orbits, (ρ−2/3r − 1)2 = 1− ρ−2/3L2 for |ρ| = 1
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Discussion

Dominant effect producing non-existence seems to be crossing
orbit of secondary.

Foliation degenerates on the circular orbits, so expect
non-existence near r = L2, because even though there are invariant
tori around the continuation of the circular orbits the thinnest ones
are not transverse to the foliation.

Expect resonance to be important only for orbits that do not cross
r = 1. This is r > 1, 2r

r+1 < L2 < 2r , where Kepler ellipses remain

in r > 1, or r < 1, L2 < 2r
r+1 , where they remain in r < 1.

Even then, resonances might not show up for one or other choice
of symmetry plane. Indeed, surface of section plot suggests that
they do not show up in θ = 0 and some are missing in θ = π.



Surface of section plot
Below is the plot for C = 3.2, µ = 0.1, zoomed-in to focus on the region L 2 [�1.5, 0] (as

this is the region where tori are clearly identified). The same plot is included in Appendix

A.10 at a di↵erent zoom level.

Figure 8: A plot for C = 3.2 and µ = 0.1, zoomed-in to focus on the region L 2 [�1.5, 0].
Initial conditions are all combinations of ✓ = {�4⇡

5 , �3⇡
5 , �2⇡

5 , �1⇡
5 , 0, 1⇡

5 , 2⇡
5 , 3⇡

5 , 4⇡
5 , ⇡} and

r 2 [0.1, 4] sampled at 20 equidistant points. The program attempts to plot 1000 apoapsis
points for each initial condition, but stops if the integrator cannot identify the subsequent
apoapsis before a (somewhat arbitrary) timeout condition. Di↵erent colours indicate dif-
ferent initial conditions (though colours have been repeated).

This plot is fascinating; we can clearly see the closed curves formed by the invariant tori.

In particular, we see two sets of island chains - a blue set around L = 0 and a green set

around L = �0.2. The large yellow curve at ✓ = 0 overlaps a number of other invariant

tori, most likely as a result of our multivalued selection of initial conditions. We can clearly

see that it would be sensible to pick ✓ = ⇡ (or equivalently �⇡) as our initial condition

as this intersects the majority of tori and island chains that are visible in our plot. Some

tori, such as the blue island chain, will still be excluded however ✓ = ⇡ still appears the

most appropriate selection.

Further surface of section plots have been included in the appendices. The patterns

formed are stunning, especially the mix of chaos alongside intricate and complex patterns

of invariant tori. With further study to remove the multivalued aspect of the initial

conditions (and a more powerful computer), it would be fascinating to create larger and

more complex plots.
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Figure: Surface of section plot (pr = 0, ṗr < 0) for C = 3.2, µ = 0.1

Periodic orbits of Maslov index 0 do not experience negative
crossings. So θ = 0 is not a good choice for this method; θ = π is
better but still intersects some periodic orbits of Maslov index 0.



Symmetry plane Pπ

Figure 7: Plot for µ = 0.9 alongside resonance curves for ⇢ = {1
2 , 2

3 , 3
4 , 4

5 , 1, 5
4 , 4

3 , 3
2 , 2, 3, 4, 5}

overlaid in blue. Only initial conditions whose trajectories satisfy rmin > 1 in the µ = 0
case have been considered.

9 Better Initial Conditions

When selecting initial conditions in Section 7.2, we decided to focus on the (L, r) plane

with pr = 0 and stated that to map this into (x, y, px, py) space requires us to select an

angle ✓ on which the initial conditions lie. For the rotationally symmetric µ = 0 case, ✓

is arbitrary and we selected ✓ = 0. In Section 8.3 where µ 6= 0, this choice of ✓ persisted,

though for no compelling reason.

We will now look at the Poincaré maps in the (L, ✓) plane to better observe the dynamics

of the system and provide a comparison to our results above. Through inspection of these

dynamics we can identify which values of ✓ = constant intersect the maximal number

of tori and hence make for a good choice of starting condition, allowing us to determine

whether ✓ = 0 is indeed suitable.

9.1 Poincaré Maps

A ‘Poincaré’ or ‘first return’ map P for a surface ⌃ (known as a ‘Poincaré section’ or

‘surface of section’) maps x 7! P (x), where P (x) is the point at which the trajectory

originating from x 2 ⌃ next intersects ⌃. The two conditions on ⌃ are that it must be
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Figure: Plane θ = 0 for µ = 0.9, equivalent to θ = π for µ = 0.1

So need a better symmetry plane (perhaps where return map =
reflection) or “killends” extension of method.



Killends
Step 1: Integrate from ξs(t) to vector ξt at s(0) for t ∈ [−T ,T ].

Let ξ̃t be the quotient by Rv(s(0)), and S be the set of directions
of ξ̃t , t ∈ [−T ,T ]. If ∃ invariant torus T through s(0) transverse
to F then S ∩ (−S) = ∅. So if non-empty there is no such torus.

Step 2: Take a transverse section Σ to v ; do step 1 for all its
points. Then tangent τ to Σ∩ T is in complement C to S ∪ (−S).
If integrating the differential inclusion τ ∈ C in one direction from
a point forces termination in the set where C = ∅ then C at that
point can be set to empty (and at all points reached on the way).
More efficient to work outwards from the set where C = ∅.



Illustration of killends for standard map

Converse KAM 491 

Any squares for which 

D,~Ei; < 1 (7.13) 

can have no rotational invariant circles passing through them, and so can be 
deleted. 

Clearly this can be implemented rigorously. All one needs is bounds on 9 and 
g', and on the operations of reciprocation, subtraction and multiplication. We did 
not take the trouble to do so, however, because the implementation of Criterion 2 
turned out to be more efficient. 

Figures 5 and 6 show results obtained for the standard map by iterating (7.10), 
(7.11) until no further change was observed (half a dozen iterations suffice). Our 
implementation included special "squares" along the top and right-hand edges, to 
represent intervals on the edges x = 0 and z = 0, since these appear to be the most 
sensitive places. In Fig, 5, for k ~ 1.29, we see that all the special edge squares have 
been deleted. Since every rotational invariant circle must cross the edges there can 
be none. 

Figure 6, for k ~ 1.05, allows rotational invariant circles to exist in the region 
where the cones still exist. If, following all slopes allowed by the conefield in one 

3/Z, 

z 112 

114 

1/32 
0 11/, 112 314 l 

X 

Fig. 6. Conefield for rotational invariant circles of  the standard map at k ~ 1.05. No circles pass 
through the black regions 
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direction or the other from an allowed point, however, one necessarily enters a 
region through which no rotational invariant circles pass, then there can be no 
rotational invariant circles through that point. This allows one to delete more 
squares. For example, it reduces the region of Fig. 6, where rotational invariant 
circles can exist to that of Fig. 7. It removes everything in Fig. 5, of course. We call 
this supplementary criterion for non-existence of circles, "kiU-ends". 

At first sight, one can only use killends in conjunction with version 3 of the 
criterion, because it needs the Lipschitz conefield, but a weaker version of killends 
can be used with the earlier versions of the criterion, using just the initial explicit 
Lipschitz cone as in (3.18) and (3.19). Note that the version of kiltends used in Fig. 7 
did not take into account the special edge squares. If it had, it would have deleted 
some more squares, as you can see. Also note that, unfortunately, the bottom two 
rows of Figs. 6 and 7 got lost in the hardcopy. 

As discussed in Sect. 6, some supplementary criterion like kitlends is necessary 
if one is to separate orbits on rotational invariant circtes from general minimising 
orbits. One might ask what the conefield represents on minimising orbits not lying 
on invariant circles. If the orbit is hyperbolic and hence has stable and unstable 
directions, then the conefield represents bounds on these invariant directions, 
because all directions outside the cones eventually get pushed inside under 

0 114 112 31~ 
X 

Fig. 7. Same as Fig. 6 after application of subsidiary criterion "killends" 

Figure: From MacKay & Percival, Commun Math Phys 98 (1985) 469



Extensions

Better coordinates to plot symmetry planes for PCR3BP are
L′ = L

r2
, r ′ = 2r

r+1 , because non-escape region is L′ < 2, circular
orbits is L′ = 1, and r ′ compactifies (0,∞) to (0, 2) preserving 1.

Can apply to different foliations adapted to different classes of tori
in different regions of phase space. Particularly interesting in the
PCR3BP would be a foliation adapted to invariant tori surrounding
the secondary mass, to determine sphere of influence.

Or even to a single foliation (with singularities) to cover all classes
of tori, e.g. for pendulum could use gradient curves of H (has been
applied by Duignan&Meiss to extend results of MacKay, Physica D
36 (1989) 64 for the two-wave Hamiltonian). Separate the classes
using the singularities of the foliation. Best to regularise collisions
with the primaries first.

All extends to more DoF for Lagrangian tori transverse to a
Lagrangian foliation (cf. M,Meiss&Stark, Nonlin 2 (1989) 555, and
correspondence with Robbins years ago about Maslov cycle).



3. Conclusion

Have presented the use of Hamiltonian dynamics to design
magnetic fields in which guiding centre motion is integrable.

And a method to establish regions of phase space through which
pass no invariant tori of given class.

If someone good at numerics for Hamiltonian systems would like to
come and implement the non-existence criterion for FGCM in some
example magnetic fields, let me know.
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