Monoclinal waves in granular flow: The interplay between nonlinearity and slow diffusion

DDCAVI 2020

Dimitrios Razis University of Patras, Greece

Based on...

J. Fluid Mech. (2018), *vol.* 843, *pp.* 810–846. © Cambridge University Press 2018 doi:10.1017/jfm.2018.149

810

The granular monoclinal wave

Dimitrios Razis¹, Giorgos Kanellopoulos^{1,2} and Ko van der Weele^{1,†}

¹Department of Mathematics and Center for Research and Applications of Nonlinear Systems, University of Patras, 26500 Patras, Greece

²Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece

(Received 11 July 2017; revised 4 December 2017; accepted 1 February 2018)

An iconic example: the KdV soliton

$$\frac{\partial h}{\partial t} + \sqrt{gh_0} \left(1 + \frac{3h}{2h_0} \right) \frac{\partial h}{\partial x} + \frac{1}{6} \sqrt{gh_0} h_0^2 \left[\frac{\partial^3 h}{\partial x^3} \right] = 0$$

A balance between: *non-linearity* & *dispersion*

Mathematical model: Saint-Venant equations

Continuity:
$$\frac{\partial h}{\partial t} + \frac{\partial (h\overline{u})}{\partial x} = 0$$

Momentum:

Rheological law 1: the friction coefficient $\mu(h,\bar{u})$

$$\mu(h,\overline{u}) = \tan \zeta_1 + \frac{\tan \zeta_2 - \tan \zeta_1}{1 + \frac{\beta h^{3/2} \sqrt{g \cos \zeta}}{\int \overline{u}}} \quad \text{for } F > \mu$$

 $F = \frac{\overline{u}}{\sqrt{gh\cos\zeta}}$: Froude number [Inertia/Gravity]

In our system:

m:

$$\zeta_1 = 32.9^{\circ}$$

 $\zeta = 33.3^{\circ}$
 $\zeta_2 = 42.0^{\circ}$
 $\beta = 0.5$
 $\mathcal{L} = 1 \,\mathrm{mm}$

O. Pouliquen and Y. Forterre, J. Fluid Mech. **453** (2002)

Rheological law 2: the viscosity coefficient $v(\zeta)$

Basic solution: steady uniform flow

Inviscid limit ($v \rightarrow 0$)

Continuity:

Momentum:

Reduced momentum

$$\frac{\partial \overline{u}}{\partial t} + \overline{u} \frac{\partial \overline{u}}{\partial x} = g \sin \zeta - g \cos \zeta \frac{\partial h}{\partial x} - \mu(h, \overline{u}) g \cos \zeta$$

 $\frac{\partial}{\partial t} \left(h \overline{u} \right) + \frac{\partial}{\partial x} \left(h \overline{u}^2 \right) = hg \sin \zeta - \frac{\partial}{\partial x} \left(\frac{1}{2} g h^2 \cos \zeta \right) - \mu(h, \overline{u}) hg \cos \zeta$

Rescalings:

$$h = h_{-}\tilde{h}$$
 $x = h_{-}\tilde{x}$ $\overline{u} = \overline{u}_{-}\tilde{u}$ $t = (h_{-}/\overline{u}_{-})\tilde{t}$

 $\frac{\partial h}{\partial t} + \frac{\partial (h\overline{u})}{\partial x} = 0$

with

$$\overline{u}_{-} = \frac{\beta \sqrt{g \cos \zeta}}{\int \gamma(\zeta)} h_{-}^{3/2}$$

The non-dimensional system

$$\frac{\partial \tilde{h}}{\partial \tilde{t}} + \frac{\partial \left(\tilde{h}\tilde{u}\right)}{\partial \tilde{x}} = 0$$

$$F_{-}^{2}\left(\frac{\partial \tilde{u}}{\partial \tilde{t}} + \tilde{u}\frac{\partial \tilde{u}}{\partial \tilde{x}}\right) = -\frac{\partial \tilde{h}}{\partial \tilde{x}} + \tan\zeta - \tan\zeta_{1} - \frac{\tan\zeta_{2} - \tan\zeta_{1}}{1 + \gamma \tilde{h}^{3/2} / \tilde{u}}$$

for stable monoclinal waves:

 $\beta < F_{-} < 2/3$

 $\rightarrow \beta^2 < F_-^2 < 0.44$

Creeping flow limit ($F_{<<1}$)

Creeping flow limit (continued)

$$\tilde{u} \approx \gamma(\zeta) \frac{\tan \zeta - \tan \zeta_1 - (\partial \tilde{h} / \partial \tilde{x})}{\tan \zeta_2 - \tan \zeta + (\partial \tilde{h} / \partial \tilde{x})} \tilde{h}^{3/2}$$

Taylor expansion

for a monoclinal wave: $\partial \tilde{h} / \partial \tilde{x} << 1$

$$\rightarrow$$

 \sim

$$\frac{a-\varepsilon}{b+\varepsilon} \approx \frac{a}{b} - \frac{a+b}{b^2}\varepsilon$$

$$\tilde{u} \approx \tilde{h}^{3/2} - \frac{1 + \gamma(\zeta)}{\tan \zeta_2 - \tan \zeta} \frac{\partial \tilde{h}}{\partial \tilde{x}} \tilde{h}^{3/2}$$
 closure for
the continuity equation!

nonlinearity vs. slow diffusion

Numerical results (continued)

Conclusion

The shape of a granular monoclinal wave in the creeping flow limit ($F \ll 1$) is determined by the competition of two opposing mechanisms: nonlinearity and slow diffusion

Thank you !