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Coherent States

I Coherent States of light:
The eigenstates of bosonic annihilation operator â, or
displaced vacuum state

â|γ〉 = γ|γ〉 or |γ〉 = D̂(γ)|0〉; D̂(γ) = e(γâ
†−γ∗â),

I γ is complex number.
I In terms of coherent superposition of photon-number state

basis:

|γ〉 = e−
|γ|2
2

∞∑
n=0

γn√
n!
|n〉.

I The uncertainty product is minimum

(∆X̂1)2 =
1

4
= (∆X̂2)2 ∆X̂1 ∆X̂2 =

1

4
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Squeezed States

I Squeezed States

D̂(γ)Ŝ(ς)|0〉 = |γ, r〉; Ŝ(ς) = exp
[1

2
(ς∗â2 − ς â† 2)

]
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Schrödinger Cat States

I Schrödinger Cat States are the superposition of
macroscopically distinct (180◦ out phase) coherent states1

|γ〉YS =
N√

2

(
|γ〉+ e iπ/2| − γ〉

)

I The normalization constant is given as

N =
(
1 + exp(−2γ2)cos(φ)

)−1
2 .

1D. Stoler, Phys. Rev. Lett. 57, 13 (1986)
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Entangled Coherent States

I Entangled coherent states2 are the correlated superpositions

|Ψ〉AB = NAB

[
|γA〉 ⊗ | − γB〉+ e iφ| − γA〉 ⊗ |γB〉

]

I They can be obtained as

|Ψ〉AB =
[
ÎA ⊗ Π̂B + eiφΠ̂A ⊗ ÎB

]
|γA〉 ⊗ |γB〉,

I Here ÎA (ÎB) denotes the identity operator on subspace A
(subspace B) and Π is photon number parity operator

Π|n〉 = (−1)â
†â|n〉 = (−1)n|n〉

2B. Wielinga and B. C. Sanders J Mod. Opt., 40, 1923 (1993)
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Classical vs Nonclassical Paradigms
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Classical-like behavior of quantum optical coherent states

I Poisson photon counting statistics

Pn = |〈n|γ〉|2 = e−|γ|
2 |γ|2n

n!
, 〈n̂〉 = 〈γ|â†â|γ〉 = |γ|2,

I Poisson statistic is a benchmark of classical behavior.

I Positive phase-space probability distribution (the
Glauber-Sudarshan P function3)

P(γ) =
e |γ|

2

π2

∫
e |α|

2〈−α|ρ|α〉eα∗γ−αγ∗d2α

I For coherent states P(γ) = δ2(γ − β).

I Stability of minimum uncertainty under temporal evolution.

3E. Sudarshan, PRL, 10(7):277, (1963)
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Nonclassicality Criteria for CV optical field states

I Sub-Poisson Photon Statistics
It is probed by the Mandel Q parameter 4

Q =
(∆n)2

〈n〉
− 1, (∆n)2 = 〈n2〉 − 〈n〉2

I For Q < 0, the distribution is sub-Poissonian, otherwise, it is
Poissonian for Q = 0 and super-Poissonian for Q > 0.

I Negative volume of phase-space
measured by Glauber-Sudarshan P or Wigner function

I Quadrature Squeezing
if either (∆X̂i )

2 < 1
4 with i = 1, 2, provided ∆X̂1 ∆X̂2 = 1

4

4L. Mandel, Optics Letters, 4 (7):205, (1979)
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Transformation of Quantized Field by Interferometer

I Beam Splitter transformation

âout =
1√
2

(
âin + i b̂in

)
, b̂out =

1√
2

(
b̂in + i âin

)
I Phase shifter transformation

â→ u†p(θ)âup(θ) = âe−iθ, up(θ) = exp
(
−i â†âθ

)
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Transformation of Quantized Field by Interferometer

I Transformation by Interferometer:

âout(D1) =
1√
2

(
− â + i b̂√

2
− ie−iθ

â + i b̂√
2

)
,

âout(D1) =
1√
2

(
− â + i b̂√

2
− ie−iθ

â + i b̂√
2

)
,

I If the field bin is in the vacuum state:

〈â†out âout〉 = sin2 θ

2
〈â†inâin〉 〈b̂†out b̂out〉 = cos2

θ

2
〈â†inâin〉
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Sensitivity of an Optical Interferometer and Bounds Phase
Estimation

I The sensitivity of an optical interferometer5 is defined as

∆θ =
∆S

|∂S/∂θ|

Where S is the detected output signal and ∆S the fluctuation
in the signal.

I Thus above defined sensitivity depends on:
I the input states to the interferometer
I the detection scheme, and
I quantitative measures used to characterize the sensitivity of

the interferometer

5B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033 (1986)
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Heisenber-Limited Interferometery

I For coherent state input, the measure output signal is

S = sin2 θ

2
|γ|2 = N1; N1 is average detected field.

I Photon counting probability for coherent state is Poissonian,

Therefore, ∆N1 =
√

N1

I Thus the phase sensitivity comes out

∆θ ≈ 1

|γ|
.

1

| cos θ/2|
≈ 1

|γ|
for θ ≈ 0

I The number-phase Heisenberg uncertainty relation:

∆θ∆N ≥ 1 −→ ∆θ ≥ 1

N
, Heisenberg Limit on phase estimation
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Cramer-Rao bound (CRB) on phase sensitivity

I CRB is defined in terms of Fisher information which is given as

F (θ) =
∑
n1,n2

1

p(n1n2)

(
∂p(n1n2)

∂θ

)2

I p(n1n2) is the joint probability of detection n1 (n2) photons at
port 1 (2).

I The largest phase sensitivity is given by CRB which is defined
as 6

(∆θ)CRB =
1√
pF (θ)

I p being the number of measurements done to estimate the
phase θ.

6C.W. Helstrom, Quantum Detection and Estimation Theory (New York:
Academic Press, 1976)
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The SU(1, 1) Lie algebra and relevant UIRs

I Set of generators, {Λ̂1, Λ̂2, Λ̂0}, span the su(1, 1) Lie algebra,
satisfying[

Λ̂1, Λ̂2

]
= − i Λ̂0,

[
Λ̂2, Λ̂0

]
= i Λ̂1,

[
Λ̂0, Λ̂1

]
= i Λ̂2[

Λ̂0, Λ̂±
]

= ± Λ̂±,
[
Λ̂−, Λ̂+

]
= 2Λ̂0 where Λ̂± = Λ̂1± i Λ̂2

I The relevant UIRs are given by positive discrete series
Dk : {|k , n〉, k > 0, n = 0, 1, 2, ...} satisfying the eigenvalue
equations

Ĉ|k , n〉 = k(k − 1)|k , n〉, Λ̂0|k, n〉 = (n + k)|k , n〉,
Λ̂−|k , n〉 =

√
n(2k + n − 1) |k, n − 1〉,

Λ̂+|k , n〉 =
√

(n + 1)(2k + n) |k, n + 1〉.

where Ĉ = Λ̂2
0 − 1

2(Λ̂+Λ̂− + Λ̂+Λ̂−) and k is Bargmann index.
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The SU(1, 1) Coherent States of Light

I The eigenstates of su(1, 1) lowering operator Λ̂−

Λ−|z , k〉 = z |z , k〉, z is a complex parameter

I In terms of the basis |n, k〉:

|z , k〉 =
zk−

1
2√

I2k−1(2|z |)

∞∑
n=0

zn√
n!Γ(n + 2k)

|n, k〉

I Single-mode biphotonic realization su(1, 1) algebra

Λ̂+ =
â†2

2
, Λ̂− =

â2

2
, Λ̂0 =

1

4
(2â†â+ 1)

I Bergmann index takes values k = 1/4, 3/4 and UIR maps
onto photon-number states

|n〉 ↔ |k , n̄〉 for n = 2(n̄ + k)− 1/2.
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Excited (photon-added) SU(1, 1) Coherent States

I The excited coherent states are obtained as 7

|z , k ,m〉 = (Λ̂+)m|z , k〉.

I Expanding in terms of UIRs:

|z , k,m〉 = N
∞∑
n=0

zn
√

(n + m)! Γ(2k + n + m) Γ(2k)

n! Γ(2k + n)
|n + m, k〉

where the normalization constant is

N =

[ ∞∑
n=0

|z |2n(n + m)! Γ(2k + n + m) Γ(2k)

[n! Γ(2k + n)]2

]−1
2

.

7H. B. Monir, N. Amir and S. Iqbal, Int. J. of Theor. Phys. 58 (2019) 1776
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Photon Counting Statistics of excited SU(1, 1) CSs

Figure: For m = 8 for (a)k = 1
4 (b) k = 1

2 (c) k = 3
4 and (d) k = 1.5
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Sub-Poissonian Photon Counting Probability Distribution
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Figure: Mandel Q Parameter for (a)k = 1
4 (b) k = 1

2 (c) k = 3
4 and (d)

k = 1.5
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Summary and conclusions

I First the properties of continuous-variable optical field states
have been reviewed in the context of optical interferometry.

I Then we discussed the phase sensitivity of an optical
interferometer and various bounds on the precision phase
estimation, such as, Heisenberg Limit and Cramer-Rao bound
(CRB).

I The procedure of engineering of nonclassical states of light
have been discussed which may help beating the standard
quantum bounds on precision phase estimation.
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