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Continuous-variable (CV) Quantum Optical Field States
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Coherent States

» Coherent States of light:
The eigenstates of bosonic annihilation operator &, or
displaced vacuum state

~
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> v is complex number.

> In terms of coherent superposition of photon-number state
basis:

)= e E S iy
n:O\/m '

» The uncertainty product is minimum
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Squeezed States

» Squeezed States

D(1)5(s)[0) = |7, r);  S() = exp[5 (78 —

AX AX,

2

AX

Coherent Light Squeezed Coherent Light

1

24



Schrodinger Cat States

Quantum Interference

[alive)
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» Schrodinger Cat States are the superposition of
macroscopically distinct (180° out phase) coherent states?

s = 22
’sz—ﬁ

Quantum Interference

(1) + €™ =)

» The normalization constant is given as

N = (1 + exp(—27?)cos(¢)) £

ID. Stoler, Phys. Rev. Lett. 57, 13 (1986)
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Entangled Coherent States

» Entangled coherent states? are the correlated superpositions

[W)ag = Nag |[1a) © | = 78) + €] = 7a) © 78)

» They can be obtained as
(W) ag = [iA @ MNg + M@ Ig| |ya) @ [v8),

> Here ia (IAB) denotes the identity operator on subspace A
(subspace B) and I1 is photon number parity operator

Min) = (~1)¥'3|n) = (~1)"|n)

2B. Wielinga and B. C. Sanders J Mod. Opt., 40, 1923 (1993)
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Classical vs Nonclassical Paradigms
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Classical-like behavior of quantum optical coherent states

» Poisson photon counting statistics

2 _ P 5 5T 5 2
Po = ltnif2 = e DIZ () = (y1ataiyy = 2

Poisson statistic is a benchmark of classical behavior.

v

v

Positive phase-space probability distribution (the
Glauber-Sudarshan P function®)

|72 . .
P(v) = € > e‘o‘|2<—04’p]04>ea Y=Y 2,
7T .

For coherent states P(7y) = 6%(y — B).

Stability of minimum uncertainty under temporal evolution.

v

v

3E. Sudarshan, PRL, 10(7):277, (1963)
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Nonclassicality Criteria for CV optical field states

» Sub-Poisson Photon Statistics
It is probed by the Mandel Q parameter #
(An)?
—1,
(n)

Q= (An)? = (n*) — (n)?

» For Q < 0, the distribution is sub-Poissonian, otherwise, it is
Poissonian for @ = 0 and super-Poissonian for @ > 0.

» Negative volume of phase-space
measured by Glauber-Sudarshan P or Wigner function

> Quadrature Squeezing A A
if either (AX;)? < 1 with i = 1,2, provided AX; AX; = 1

L. Mandel, Optics Letters, 4 (7):205, (1979)
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Quantum Optical Metrology: Precision on Phase Estimation
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Transformation of Quantized Field by Interferometer
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» Beam Splitter transformation
3 L (é +‘B) b L (B+'§)

= i 1 i s = i | H

out \@ n n out \@ n n

» Phase shifter transformation
5 Mh(0)a,(0) = de,  M,(0) = exp (—iéTée)
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Transformation of Quantized Field by Interferometer

» Transformation by Interferometer:

(1) 1 a+ib ie,,9§+i3
Bou =—|——= - :
_,gé\‘i‘IB

A 1 5+ib .
aout(D]_) = E <— — 1€

» If the field b;, is in the vacuum state:

29
2

o 0 .
<é\luté\OUt> =sin <§T ain) <blutbout> = cos? §<aT ain)

n
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Sensitivity of an Optical Interferometer and Bounds Phase

Estimation

» The sensitivity of an optical interferometer® is defined as

AS

A0=155/00]

Where S is the detected output signal and AS the fluctuation
in the signal.
» Thus above defined sensitivity depends on:

» the input states to the interferometer

» the detection scheme, and

» quantitative measures used to characterize the sensitivity of
the interferometer

®B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033 (1986)
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Heisenber-Limited Interferometery

» For coherent state input, the measure output signal is
.2 0 2 . .
S =sin EM = Nyi; Nj is average detected field.

» Photon counting probability for coherent state is Poissonian,
Therefore, AN; =+/N;

» Thus the phase sensitivity comes out

1

1 1
N———x — for 0=0
7] [cos0/2] |

A6
» The number-phase Heisenberg uncertainty relation:

AOAN > 1 — A6 > Heisenberg Limit on phase estimation

)

=2~
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Cramer-Rao bound (CRB) on phase sensitivity

» CRB is defined in terms of Fisher information which is given as

FO) = p(ni,u) <8p(g;n2)>2

ny,n2

» p(niny) is the joint probability of detection ny (n2) photons at
port 1 (2).
» The largest phase sensitivity is given by CRB which is defined

as ©
1

v/ PF(0)

» p being the number of measurements done to estimate the
phase 6.

(AO)cr =

8C.W. Helstrom, Quantum Detection and Estimation Theory (New York:
Academic Press, 1976)
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Engineering Nonclassical CV States for Quantum Metrolog
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The SU(1,1) Lie algebra and relevant UIRs

» Set of generators, {/A\l,/A\g,/A\o}, span the su(1,1) Lie algebra,
satisfying

A~

[/A\l,/A\z] = —iho, [/A\27/A\0] = ihy, [/A\o,/A\ﬂ =il
[i\o,//\\i] = :|:/A\:|:, [/A\,,/A\Jr] = 2//\\0 where /A\:t = //\\1:f:l' /A\z

> The relevant UIRs are given by positive discrete series
DX : {|k,n),k >0,n=0,1,2,...} satisfying the eigenvalue
equations

CA‘kvn> = k(k_l)‘k7n>7 /A\O\k,n>:(n—i—k)|k,n>,

A_lk,n) = /n(2k+n—1)|k,n—1),

Aylk,n) = /(n+1)(2k + n) |k,n+1).

where € = A2 — %(/A\+/A\_ + Ay A_) and k is Bargmann index.
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The SU(1,1) Coherent States of Light

» The eigenstates of su(1,1) lowering operator A_
N_|z, k) = z|z, k), zis a complex parameter
> In terms of the basis |n, k):

2
\/I2k 12|Z Z\/nlr n+2k

» Single-mode biphotonic realization su(1,1) algebra

|2, k) =

~ 412 A 52 N 1
AL A== Ao = =(25"53+1
B > 0 4(33+)

» Bergmann index takes values k = 1/4,3/4 and UIR maps
onto photon-number states

|n) <> |k, ) for n=2(A+k)—1/2.
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Excited (photon-added) SU(1,1) Coherent States

» The excited coherent states are obtained as ’
|z, k,m) = (Ay)7|z, k).

» Expanding in terms of UIRs:

(n+ m)! T(2k + n+ m) T'(2k)
|z, k,m) = NZ /(o ATk £ 1) |n+ m, k)

where the normalization constant is

|z2"(n + m)! T(2k + n+m) T(2k)] 2
[Z [n! T(2k + n)]?

"H. B. Monir, N. Amir and S. Igbal, Int. J. of Theor. Phys. 58-(2019) 1776
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Photon Counting Statistics of excited SU(1,1) CSs
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Figure: For m = 8 for (a)k = 1 (b) k
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Sub-Poissonian Photon Counting Probability Distribution
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Figure: Mandel Q Parameter for (a)k =
k=15
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Summary and Conclusions
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Summary and conclusions

» First the properties of continuous-variable optical field states
have been reviewed in the context of optical interferometry.

» Then we discussed the phase sensitivity of an optical
interferometer and various bounds on the precision phase
estimation, such as, Heisenberg Limit and Cramer-Rao bound
(CRB).

» The procedure of engineering of nonclassical states of light

have been discussed which may help beating the standard
quantum bounds on precision phase estimation.
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