Chaotic behavior of multidimensional Hamiltonian systems

Haris Skokos

Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

> E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Outline

- Brief overview of the dynamics of 1D Disordered lattices:
 - ✓ The quartic disordered Klein-Gordon (DKG) model
 - The disordered discrete nonlinear Schrödinger equation (DDNLS)
 - ✓ Different dynamical regimes
- Chaotic behavior of the DKG and DDNLS models in 1 and 2 spatial dimensions
 - ✓ Lyapunov exponents
 - ✓ Deviation Vector Distributions (DVDs)
- Summary

Work in collaboration with

Bob Senyange (PhD student): 1D and 2D DKG models

Bertin Many Manda (PhD student): 1D and 2D DDNLS models

Interplay of disorder and nonlinearity

Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]

The 1D disordered Klein – Gordon model (1D DKG)

$$H_{IK} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left|\frac{1}{2}, \frac{3}{2}\right|$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

<u>The 1D disordered discrete nonlinear Schrödinger</u> <u>equation (1D DDNLS)</u>

We also consider the system:

$$H_{1D} = \sum_{l=1}^{N} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l})$$

where ε_l chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization (1D case)

We consider normalized energy distributions $\xi_l \equiv \frac{E_l}{\sum E_m}$ with $E_l = \frac{p_l^2}{2} + \frac{\tilde{\varepsilon}_l}{2}u_l^2 + \frac{1}{4}u_l^4 + \frac{1}{4W}(u_{l+1} - u_l)^2$ for the DKG model, and norm distributions $\xi_l \equiv \frac{|\psi_l|^2}{\sum |\psi_m|^2}$ for the DDNLS system. Second moment: $m_2 = \sum_{l=1}^{N} (l - \overline{l})^2 \xi_l$ with $\overline{l} = \sum_{l=1}^{N} l \xi_l$ **Participation number:** $P = \frac{I}{\sum_{k=1}^{N} \xi_{k}^{2}}$

measures the number of stronger excited sites in ξ_l . Single site *P*=1. Equipartition of energy *P*=*N*.

Different dynamical regimes (1D case)

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \propto t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky & Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: d< δ < Δ , m₂ \propto t^{1/2} \rightarrow m₂ \propto t^{1/3}

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Variational Equations

We use the notation $\mathbf{x} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N, \mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N)^T$. The deviation vector from a given orbit is denoted by

 $\mathbf{v} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, \dots, \delta \mathbf{x}_{2N})^{\mathrm{T}}$

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Maximum Lyapunov Exponent

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the Lyapunov exponents of a given orbit characterize the **mean exponential rate of divergence** of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

Symplectic integration (1D case)

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

$$H_{IK} = \sum_{l=1}^{N} \left(\frac{p_l^2}{2} + \frac{\tilde{\varepsilon}_l}{2} u_l^2 + \frac{1}{4} u_l^4 + \frac{1}{2W} (u_{l+1} - u_l)^2 \right)$$

and the 3-part splitting integrator ABC⁶_[SS] [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS system:

$$\begin{split} \hat{H}_{1D} &= \sum_{l} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l}), \quad \psi_{l} = \frac{1}{\sqrt{2}} (u_{l} + ip_{l}) \\ H_{1D} &= \sum_{l} \left(\frac{\varepsilon_{l}}{2} (u_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (u_{l}^{2} + p_{l}^{2})^{2} - u_{n} u_{n+1} - p_{n} p_{n+1} \right) \end{split}$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

1D DKG: Weak Chaos

Weak Chaos: 1D DKG and 1D DDNLS

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) H_{1K} =0.37, W=3Block excitation (L=21 sites) β =0.04, W=4Single site excitation H_{1K} =0.4, W=4Single site excitation β =1, W=4Block excitation (L=21 sites) H_{1K} =0.21, W=4Single site excitation β =0.6, W=3Block excitation (L=13 sites) H_{1K} =0.26, W=5Block excitation (L=21 sites) β =0.03, W=31D DKG model also studied in S. et al., PRL (2013)

Strong Chaos: 1D DKG and 1D DDNLS

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) H_{1K} =0.83, W=2Block excitation (L=21 sites) β=0.62, W=3.5Block excitation (L=37 sites) H_{1K} =0.37, W=3Block excitation (L=21 sites) β=0.5, W=3Block excitation (L=83 sites) H_{1K} =0.83, W=3Block excitation (L=21 sites) β=0.72, W=3.5

$$\frac{\text{The 2D DKG model}}{H_{2K}} = \sum_{l,m} \left\{ \frac{p_{l,m}^2}{2} + \frac{\tilde{\varepsilon}_{l,m}}{2} u_{l,m}^2 + \frac{u_{l,m}^4}{4} + \frac{1}{2W} \left[\left(u_{l,m+1} - u_{l,m} \right)^2 + \left(u_{l+1,m} - u_{l,m} \right)^2 \right] \right\}$$
Again we have fixed boundary conditions and $\tilde{\varepsilon}_{l,m}$ are chosen uniformly in $\left[\frac{l}{2}, \frac{3}{2} \right]$.
$$\frac{\text{The 2D DDNLS system}}{H_{2D}} = \sum_{l,m} \left\{ \frac{\varepsilon_{l,m}}{2} \left(u_{l,m}^2 + p_{l,m}^2 \right) + \frac{\beta}{8} \left(u_{l,m}^2 + p_{l,m}^2 \right)^2 - \left(u_{l,m+1}u_{l,m} + u_{l+1,m}u_{l,m} + p_{l,m+1}p_{l,m} + p_{l+1,m}p_{l,m} \right) \right\}$$
Again ε_l are chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2} \right]$ and β is the nonlinear parameter.
$$\text{Conserved quantities: The energy } H_{2D} \text{ and the norm } S = \sum_{l,m} \frac{u_{l,m}^2 + p_{l,m}^2}{2}$$

Distribution characterization (2D case)

DKG: energy distributions $\xi_{l,m} = E_{l,m} / H_{2K}$ with

$$E_{l,m} = \frac{p_{l,m}^2}{2} + \frac{\tilde{\varepsilon}_{l,m}u_{l,m}^2}{2} + \frac{u_{l,m}^4}{4} + \frac{\left[\left(u_{l,m} - u_{l-1,m}\right)^2 + \left(u_{l,m} - u_{l,m-1}\right)^2 + \left(u_{l,m+1} - u_{l,m}\right)^2 + \left(u_{l+1,m} - u_{l,m}\right)^2\right]}{4W}$$

DDNLS: norm distributions $\xi_{l,m} = (u_{l,m}^2 + p_{l,m}^2)/2S = s_{l,m}/S$

Second moment:
$$m_2 = \sum_{l,m} \|r_{l,m} - \overline{r}\|^2 \xi_{l,m}$$
 with $r_{l,m} = (l,m)$
and $\overline{r} = (\overline{l}, \overline{m}) = \left(\sum_{l,m} l \xi_{l,m}, \sum_{l,m} m \xi_{l,m}\right)$

Theoretical predictions [Flach et al., PRL (2009) - Flach, Chem. Phys (2010)]Weak chaos: $m_2 \propto t^{1/5}$ Strong chaos: $m_2 \propto t^{1/3}$

Spreading in 2D DKG and 2D DDNLS

Excitation of central L×L sites and average over 50 realizations [Many Manda, Senyange & S., PRE (2020)]

The weak chaos case of the 2D DKG system was also considered in Laptyeva et al., EPL (2012)

2D DDNLS : Strong Chaos

Weak Chaos: 2D DKG and 2D DDNLS 2D DKG 2D DDNLS

Strong Chaos: 2D DKG and 2D DDNLS 2D DKG 2D DDNLS

Dimension-independent scaling between chaoticity and spreading

 $m_2 \propto t^{a_m}$

Second moment: Theoretical predictions verified by numerical computations

a_{Λ}	Weak	Strong
1 D	-0.25	-0.30
2 D	-0.37	-0.46

 $\Lambda \propto t^{\alpha_{\Lambda}}$ Finite time mLCE: Numerical computations

 $\alpha_{\rm m}$

1D

2D

Weak

1/3

1/5

Strong

1/2

1/3

For 1D and 2D systems there exists a uniform *scaling between the wave packet's spreading and its degree of chaoticity* indicating that nonlinear interactions of the same nature are responsible for the chaotic wave-packet spreading in both cases.

Weak chaos

$$\frac{\Lambda(t)}{m_2(t)}\Big|_{1D} = \frac{\Lambda(t)}{m_2(t)}\Big|_{2D}$$
Strong chaos
 $t^{-0.58} \approx t^{-0.57}$
 $t^{-0.80} \approx t^{-0.79}$

1D: Deviation Vector Distributions (DVDs)

1D: Deviation Vector Distributions (DVDs)

1D DKG: weak chaos. L=37 sites, H_{1K}=0.37, W=3

-16 -12 **Energy** DVD 8 6 log 10 t 4 2 0 log10 ξ1/log10 ξP -16 700 700 400 1000 400 1000 1 1

Weak Chaos (1D): DKG and DDNLS

DKG: W=3, L=37, H_{1K}=0.37

DDNLS: W=4, L=21, β=0.04

1D: Deviation Vector Distributions (DVDs)

1D DDNLS: strong chaos W=3.5, L=21, β =0.72

Norm

DVD

Strong Chaos (1D): DKG and DDNLS

DKG: W=3, L=83, H_{1K}=8.3

DDNLS: W=3.5, L=21, β=0.72

1D: Characteristics of DVDs

Weak chaos

Strong chaos

1D: Characteristics of DVDs

2D: Deviation Vector Distributions (DVDs)

2D DKG: weak chaos L=1 sites, H_{2K}=0.05, W=10

Energy DVD Energy DVD

2D: Deviation Vector Distributions (DVDs)

2D DDNLS: strong chaos L=15, W=12, β =0.425, s_{1,m}=1, H_{2D}=1.32

Norm DVD Norm DVD

2D: Characteristics of DVDs

Weak chaos

Strong chaos

2D: Characteristics of DVDs

Summary

We investigated in depth the chaotic wave-packet spreading in 1D and 2D disordered nonlinear systems

- We verified theoretical predictions for the characteristics of spreading in 2D
 - strong chaos regime, weak chaos for the DDNLS system
- Generality of results for 1D and 2D systems
 - both the DKG and the DDNLS models show similar chaotic behaviors for each dynamical regime (weak strong chaos)
- Universal decrease of the systems' chaoticity in time
 - 1D: Weak chaos: $\Lambda \propto t^{-0.25}$ Strong chaos: $\Lambda \propto t^{-0.30}$
 - 2D: Weak chaos: $\Lambda \propto t^{-0.37}$ Strong chaos: $\Lambda \propto t^{-0.46}$
- Dimension-independent scaling between the wave packet's spreading and chaoticity: Λ/m_2 (1D) = Λ/m_2 (2D). What about 3D?
- The DVDs provide information about the propagation of chaos
 - wandering of localized chaotic hot spots in the lattice's excited part homogenizes chaos
- B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018) 'Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices'
- B. Many Manda, B. Senyange & Ch. S.: Phys. Rev. E, 101, 032206 (2020) 'Chaotic wave-packet spreading in twodimensional disordered nonlinear lattices'

References

systems

- Flach, Krimer, S. (2009) PRL, 102, 024101 ٠
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211 •
- S., Flach (2010) PRE, 82, 016208 •
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001 •
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205 •
- Dynamics of disordered 107 lattices Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) IJBC, 21, 2107 •
- S., Gkolias, Flach (2013) PRL, 111, 064101 •
- Tieleman, S., Lazarides (2014) EPL, 105, 20001 •
- Antonopoulos, Bountis, S., Drossos (2014) Chaos, 24, 024405 •
- Antonopoulos, S., Bountis, Flach (2017) Chaos Sol. Fract., 104, 129 •
- Senyange, Many Manda, S. (2018) PRE, 98, 052229 •
- Many Manda, Senyange, S. (2020) PRE, 101, 032206 •
- S., Gerlach (2010) PRE, 82, 036704 ٠
- Gerlach, S. (2011) Discr. Cont. Dyn. Sys.-Supp., 2011, 475 ٠
- Gerlach, Eggl, S. (2012) IJBC, 22, 1250216 •
- Numerical integration of multidimensional Hamiltonian S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809 •
- Gerlach, Meichsner, S. (2016) Eur. Phys. J. Sp. Top., 225, 1103 •
- Senyange, S. (2018) Eur. Phys. J. Sp. Top., 227, 625 ٠
- Danieli, Many Manda, Mithun, S. (2019) MinE, 1, 447 ٠