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Motivations to consider ”noise” in dynamics

I System is driven by a signal with probabilistic characterisation.

I High-dimensional system admits a reduction to
low-dimensional systems driven by noise (either theoretically
justified or phenomenologically).

I Effective accounting for modelling uncertainty, considering a
random ensemble of models to describe a system rather than
one (arbitrary) model among them.

J.S.W. Lamb, Bifurcations in RDS, 6th Dynamics Days Central Asia, Kazakhstan, 2/6/20



3/30

How are bifurcations affected by noise?

Consider a stochastic differential equation (SDE) on a space X

dx = fα(x)dt + σdWt ,

where α = 0 is a bifurcation point for the deterministic system

dx

dt
= fα(x).

Question: Does the stochastic system exhibit a bifurcation? If so,
in what sense?
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Example: pitchfork bifurcation with additive noise

fα(x) = −∂xVα(x) with Vα = −α
2 x

2 + 1
4x

4.

: α = −1 : α = 1

J.S.W. Lamb, Bifurcations in RDS, 6th Dynamics Days Central Asia, Kazakhstan, 2/6/20



5/30

From SDE to Random Dynamical System

The SDE driven by additive noise

dxt = f (xt)dt + σ dWt ,

can be viewed as a random
dynamical system (skew-product
flow) φ satisfying

φ(t+s, ω, x) = φ(t, θsω, φ(s, ω, x)),

where ω a sample path in Ω of
the Brownian motion B(t) with
invariant Wiener measure PW .
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The one-point Markov process

I The one-point process (xt)t≥0 is associated with a family of
probabilities (Px)x∈X with Px(x0 = x) = 1 and transition
probabilities

P̂t(x ,A) = Px(xt ∈ A), t ≥ 0.

I The Fokker-Planck equation describes time-evolution of
associate probability densities p(x , t)

L∗tp :=
∂p

∂t
(x , t) = − ∂

∂x
(f (x)p(x , t)) +

σ2

2

∂2p

∂x2
(x , t).

I p is called a stationary density if L∗tp = 0.
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Pitchfork Bifurcation with Additive Noise

For fα(x) = −∂xVα(x) and σ > 0:

Analytical solution for stationary density

p(x) = Nα,σ exp(−Vα(x)/σ2)

: α = −1 : α = 1
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Ergodic theory

It turns out that ρ× PW is invariant (and ergodic) for the
skew-product motion of the RDS with one-sided time (noise
defined on R+). Henceforth, by Birkhoff’s Ergodic Theorem this
implies that

lim
T→∞

1

T

∫ T

0
g(φ(t, ω, x))dt =

∫
X
g(y)dρ(y),

for almost all (x , ω).

NB: While we observe a change of the ”shape” of the stationary
density when α passes through zero, this is not a particularly
useful/informative criterion for bifurcation. (L. Arnold branded this
a phenomenological (P) bifurcation.
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Trajectory point of view: synchronisation

: α = −1 : α = 1
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Lyapunov exponent

I The Lyapunov exponent of the RDS φ(t, ω, x) is

λ = lim
t→∞

1

t
log |Dxφ(t, ω)(x)|

= Nα,σ

∫
R

(α− 3x2) exp(
1

σ2
(αx2 − 1

2
x4)) dx

= −2Nα,σ
σ2

∫
R

(αx − x3)2 exp(
1

σ2
(αx2 − 1

2
x4)) dx

< 0.

I In general, Lyapunov exponents for 1D SDEs are always ≤ 0
(and rarely = 0).
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Pullback dynamics

In the absence of any sensible convergence of behaviour in the
limit where time goes to infinity (due to the assumed intrinsic
randomness of the driving), in non-autonomous dynamical systems,
the alternative concept of pullback-dynamics has been developed
where one considers the asymptotic behaviour of φ(t, θ−t(ω), x) as
t →∞.

In order to use this concept, we need to consider two-sided time.
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Random pullback attractors

A random compact set A : Ω→ K(X ) is called a random pullback
attractor for the RDS (θ, ϕ) if

1. ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 and a.a. ω ∈ Ω,

2. for every compact B ⊂ X , we have P-a.s.

lim
t→∞

d(ϕ(t, θ−tω)B,A(ω)) = 0. (1)

Pullback attractors are also (weak) forward attractors: moving
target for the forward dynamics.
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Stationary measure versus invariant (Markov)
measure

Let ρ be the stationary measure of an RDS and µ the associated
invariant measure, defined as

µ(A) =

∫
µω(Aω)dP(ω),

where Aω := {x ∈ X | (x , ω) ∈ A} and

µω = lim
t→∞

φ(t, θ−tω)∗ρ.

µ is called a Markov measure as µω is measurable with respect to
the past (only).
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Markov measure versus stationary measure

The stationary measure ρ associated to an invariant Markov
measure µ is the marginal ρ = µX , i.e. for measurable U ⊂ X

ρ(U) := µ(U × Ω) =

∫
Ω
µω(U)dP(ω).

Moreover, we have P(C ) = µ(C × X ).
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Attracting random fixed point

A consequence of negative Lyapunov exponent:

Theorem (Crauel and Flandoli 98)

For all α ∈ R and σ ∈ R \ {0}, the pullback attractor of the RDS φ
generated by

dx = (αx − x3) dt + σdWt

is a singleton set {a(ω)} and

δa(ω) = lim
n→∞

φ(t, θ−tω)∗ρ

PW -almost surely.

⇒ synchronisation: d(ϕ(t, ω)xi , ϕ(t, ω)xj)→ 0 as t →∞ almost surely.
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Does additive noise destroy the pitchfork
bifurcation?

This was the conclusion of Crauel and Flandoli 98 as for all α,
there is

I Strictly negative Lyapunov exponent.

I Unique attracting random fixed point.

But does this justify their conclusion?
perhaps not... we have

|φ(t, ω)x − aα(θtω))| ≤ K (ω) exp(λt)|x − aα(ω)|, with λ < 0.

Uniform attractivity: K (ω) < K̂ <∞ iff α < 0.

At α = 0, the Dichotomy Spectrum crosses zero
(Callaway, Doan, Lamb, Rasmussen (2017)).

J.S.W. Lamb, Bifurcations in RDS, 6th Dynamics Days Central Asia, Kazakhstan, 2/6/20



17/30

Lyapunov spectrum

I Linear RDS in RN :
φ(t, ω)(ax1 + bx2) = aφ(t, ω)x1 + bφ(t, ω)x2.
Denoted as Φ : R× Ω→ RN×N .

I Osceledets: (under mild assumptions) ∃k Lyapunov exponents
λ1 < λ2 < . . . < λk and RN = W1(ω)⊕ . . .Wk(ω) so that
λi := limt→±∞

1
|t| ln ||Φ(t, ω)|| for 0 6= x ∈Wi (ω).

I But we have just seen that ”bifurcation” is not necessarily
associated with a change of stability in the Lyapunov
spectrum.

I We claim that a better concept for this purpose is the
Dichotomy spectrum
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Dichotomy spectrum

I Definition: (θ,Φ) has an exponential dichotomy wrt growth
rate γ ∈ R if there exists a splitting RN = S(ω)⊕ U(ω),
measurable and invariant (Φ(t, ω)S(ω) = S(θtω), etc),
satisfying for some K , ε > 0
||Φ(t, ω)x || ≤ Ke(γ−ε)t ||x ||, for all t ≥ 0 n x ∈ S(ω).
||Φ(t, ω)x || ≥ K−1e(γ+ε)t ||x ||, for all t ≥ 0, x ∈ U(ω).

I Dichotomy spectrum Σ := R \
⋃

growth rates γ{γ}.
I Spectral Theorem: Σ = I1 ∪ . . . ∪ Ik with Ii = {Wi (ω)}ω∈Ω

and corresponding decomposition RN = W1(ω)⊕ . . .∪Wk(ω).

I In the pitchfork example, Σ = (−∞, α], so that the random
pitchfork bifurcation corresponds to a loss of hyperbolicity of
the Dichotomy spectrum.
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Finite-time Lyapunov exponents.

I λ(T , ω, x) := 1
T ln |Dxφ(T , ω)(x)| . (random variable!)

I Lyapunov exponent is λ := limT→∞ λ(T , ω, x).

Theorem (Callaway et al. 2017)

(i) If α < 0, the random attractor is finite-time attractive:
λ(T , ω, x) ≤ α < 0.
(ii) If α > 0, the random attractor is not finite-time attractive and
P{ω ∈ Ω : λ(T , ω, x) > 0} > 0.

Corollary: The (negative) sign of the Lyapunov exponent can be
observed almost surely in finite time, iff α < 0.
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Finite-time Lyapunov spectrum

α = −1
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Dichotomy spectrum and finite-time Lyapunov
exponents.

Theorem

Let (θ,Φ) be a linear random dynamical system on Rd with
dichotomy spectrum Σ, and finite-time Lyapunov exponents
λ(T , ω, x) := 1

T ln |Dxφ(T , ω)(x)| . Then, provided that
sup Σ <∞,

lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λ(T , ω, x) = sup Σ

and, provided that inf Σ > −∞,

and lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λ(T , ω, x) = inf Σ.
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Dynamical view on non-uniform synchronisation:
two-point motion

Consider (x , y)→ (φ(t, ω, x), φ(t, ω, y)).
noise

y
direction

•

.

•

•

.  -

.

x
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Topological versus uniform topological equivalence.

I RDSs φ1(t, ω) and φ2(t, ω) are topologically conjugate iff ∃
homeomorphism h : Ω× R→ R so that for all ω ∈ Ω,
φ2(t, ω)h(ω, x) = h(θtω, φ1(t, ω)x) for all t, x .

I Theorem: For the pitchfork example all φα are topologically
equivalent.

I Theorem: A topological conjugacy h from φα to φα′ with
sgn(α) = −sgn(α′) cannot be uniformly continuous.
Proof: uniformly continuous conjugacies preserve local
uniform attractivity.
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Hopf Normal Form with Additive Noise
(Doan, Engel, Lamb Rasmussen (2018))

Consider the Hopf-type stochastic differential equations ,
cf also Wieczorek (2009) and Deville et al. (2011))

dx = (αx − βy − (ax − by)(x2 + y2))dt + σ dW 1
t ,

dy = (αy + βx − (bx + ay)(x2 + y2))dt + σ dW 2
t ,

(2)

where ν, a, b, σ > 0. The parameter b is known as the shear. This
SDE has a unique stationary density

p(x , y) = K exp

(
2α(x2 + y2)− a(x2 + y2)2

2σ2

)
,

where K is a normalization constant. In the absence of noise
(σ = 0) all solutions (except the origin) are attracted to a limit
cycle with radius

√
2α/a.
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: α < 0 : α > 0

: α < 0 : α > 0

Figure: Shape of the stationary density of (2) with noise (independent of
b!) and corresponding phase portraits of the deterministic limit.
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Shear-induced chaos

: Stationary density : α=−1, b= 1,T = 50

: Stationary density : α=−1, b= 20,T = 50

Synchronisation

Chaos: sensitive
dependence on
initial condi-
tions.
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Different regimes of stability for Hopf
bifurcation (2) - partially numerical

(I)

(II)

(III)

a

0

0

α

b

Figure: For a, β, σ fixed, we partition the (b, α)-parameter space associated with (2)
schematically into three parts with different stability behaviour. Region (I) represents
uniform synchronisation, region (II) non-uniform synchronisation and region (III) the
absence of synchronisation and ”chaos”, cf (Sato, Doan, Lamb, Rasmussen (2018))
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Proof of shear induced chaos in simpler setting.

(Engel, Lamb, Rasmussen (2019))

Stochastic flow on the cylinder near attracting limit cycle

dyt = −αytdt + σf (ϑt)dWt

ϑt = (1 + byt)dt ,

0

t '

: noise

has positive Lyapunov exponent for sufficiently large b, for
appropriate choises of f . This answers an open problem posed by
Lin-Young (2008).
No rigorous proof yet of shear-induced chaos in the previous
”Hopf” setting.
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Take home messages:

I Statistical properties of the one-point motion provide only
limited information about random dynamics.

I Simplest random attractor is a uniformly attractive random
fixed point, but is relatively seen in SDE context.

I There are many open problems concerning the dynamics near
a non-uniformly attracting random fixed point.

I It is hard to prove the existence of positive Lyapunov
exponents (chaos).

I The transition from random fixed point to random chaotic
attractor is poorly understood.
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