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Motivation:

Why transparent quantum graphs

Effective (lossless) signal transfer in optical fiber- and optoelectronic 
networks

Tunable charge transport in branched nanostrctures

Tunable charge transport in conducting polymers

Effective spin, heat and quasiparticle transport in low-dimensional strctures
arising in condensed matter
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Network science

How networks are studied?

Statistical physics based approach

Statistical distributions of bonds and vertices and their dependence 

on graphs topology

Discrete, or tight binding approach:

Tight binding Hamiltonian on metric graphs

Continuum approach:

Evolution equations on metric graphs
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What have been studied in the 

context of quantum graphs so far?

• Mathematical formulation of the problem, boundary conditions: Exner (1988), 

Kostrykin, Schrader (1999), Seba (2000)

• Planar (fat) graphs: Exner, Post (2006-2012), Dell Antonio (2006)

• Quantum chaos in networks:  Kottos, Smilansky (1999), Gaspard (2004), 

Gnutzmann (2006)

• Inverse problems: Kurasov (2001), Smilansky (2004), Cheon (2010) 

• Casimir effect:   Kaplan (2005), Matrasulov (2006), Bellazini (2007)

• Quantum hall effect : Gaspard (2008)

• PT-symmetric quantum graphs: Matrasulov, et.al (2019)

• Dirac Equation on graphs:  Bolte, Harrison (2005)

• Periodic quantum graphs:   Berkolaiko, Band (2013)

• Many particles in quantum graphs:  Bolte , Kerner (2013, 2017)

• Microwave networks (networks of optical fibers):   Hull et.al (2007)
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Metric graphs

A graph with the bonds which can be assigned length,

𝒐 < 𝒍𝒃: < 𝑫

is called metric graph

“Dynamics Days Central Asia VI”,                                                      
NUR-SULTAN, KAZAKHSTAN,  2-5 JUNE 2020



The topology of the graph, that is, the way the vertices and

bonds are connected is given in terms of the VV connectivity

matrix Ci,j (sometimes referred to as the adjacency matrix)

which is defined as:

Graphs and their topology
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Constructing quantum graphs 

from finite interval (wires)

Metric graph as a collection of intervals glued to each other 

according to connectivity matrix
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𝑖
𝜕𝜓

𝜕𝑡
= 𝐻𝜓

where 𝐻 is the Shrödinger, Dirac, or other differential operator
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Evolution equation on graphs



Wave equation on graphs: 

Wave function

Wave function   Ψ is  a 𝐵-component vector
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Wave equation on graphs: 

Vertex Boundary conditions
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Differential operators on graphs

For given self-adjoint differential operator on graph D skew-Hermitian form 

can be constructed as  

( , ) , ,D D       

V.Kostrykin, R.Schrader, J. Phys. A. 32 595 (1999)
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V.Kostrykin, R.Schrader, J. Phys. A: Math. Gen. 32 (1999) 595–630. 

Boundary conditions

0)0()0(   BA

where A and B are two   𝑛 × 𝑛 matrices 

“Dynamics Days Central Asia VI”,                                                      
NUR-SULTAN, KAZAKHSTAN,  2-5 JUNE 2020



The Schrödinger equation on graphs: 

Wave function

For each bond 𝑏 = (𝑖, 𝑗) a coordinate 𝑥𝑖, 𝑗 which indicates the position along the

bond is assigned. The variable 𝑥𝑖, 𝑗 takes the value 0 at the vertex 𝑖 and the

value 𝐿𝑖, 𝑗 ≡ 𝐿𝑗, 𝑖 at the vertex 𝑗 while 𝑥𝑗, 𝑖 is zero at 𝑗 and 𝐿𝑖, 𝑗 at 𝑖.

We have thus defined the length matrix 𝐿𝑖, 𝑗 with matrix elements different from zero,

whenever 𝐶𝑖, 𝑗 ≠ 0 and 𝐿𝑖, 𝑗 = 𝐿𝑗, 𝑖 for 𝑏 = 1,… , 𝐵.

The wavefunction Ψ is a 𝐵−component vector and can be written as

where the set  B

iib
1

consists of 𝐵 different bonds.
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The Schrödinger equation on graphs: 

Boundary Conditions

The parameters 𝜆𝑖 are free parameters which determine the type of the boundary

conditions.

The special case of zero 𝜆𝑖’s, corresponds to Neumann boundary conditions. 

Dirichlet boundary conditions are introduced when all the 𝜆𝑖 = ∞.

The wave function must satisfy boundary conditions at the vertices, which ensure

continuity (uniqueness) and current conservation. For every 𝑖 = 1,… , 𝑉 :

  ,0, ixji x 

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ji
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● Current conservation
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The Schrödinger equation on graphs: 

Solutions

At any bond 𝑏 = (𝑖, 𝑗) the component 𝑏 can be written in terms of its

values on the vertices 𝑖 and 𝑗 as

The current conservation condition leads to
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where

The Schrödinger equation on graphs: 

Eigenvalues

Spectral equation
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Transparent boundary conditions

For a given finite domain, Ω, the TBC sare imposed in 
such a way that the solution of a PDE in Ω corresponds 
to that in the whole space, i.e., the wave/particle moving 
inside/outside the domain does not ‘see’ the boundary of 
the domain. 

Then such boundary conditions provide absence of the 
back scattering at the given point (or domain boundary) 
makes it transparent. 
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Transparent boundary conditions

• The  general  procedure  for  constructing  transparent boundary
conditions on a real line:

• 1. Split the original PDE evolution problem into coupled equations:  the 
interior and exterior problems.

• 2. Apply  a  Laplace  transformation  to  exterior  problems on Ωext.

• 3. Solve  (explicitly,  numerically)  the  ordinary  differential equations in 
the spatial unknownx.

• 4. Allow  only  “outgoing”  waves  by  selecting  the  decaying solution 
asx→±∞.

• 5. Match Dirichlet and Neumann values at the artificial boundary.

• 6. Apply (explicitly, numerically) the inverse Laplace transformation
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M. Ehrhardt and A. Arnold, Discrete Transparent Boundary Conditions for the Schrodinger Equation, 

Rivista di Mathematica della Universita di Parma, Volume 6, Number 4 (2001), 57-108.

Transparent boundary conditions

Schrödinger edition: Construction idea for transparent boundary conditions
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Interior problem:

𝑖𝜕𝑡Ψ = −
1

2
𝜕𝑥
2Ψ+ 𝑉 𝑥, 𝑡 Ψ, 0 < 𝑥 < 𝐿, 𝑡 > 0

Ψ 𝑥, 0 = Ψ𝐼(𝑥)

𝜕𝑥Ψ 0, 𝑡 = 𝑇0Ψ 0, 𝑡

𝜕𝑥Ψ 𝐿, 𝑡 = 𝑇𝐿Ψ 𝐿, 𝑡

𝑇0,𝐿 denote the Dirichlet-to-Neumann maps at the boundaries.
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Transparent boundary conditions



𝑇0,𝐿 are obtained by solving the two exterior problems:

𝑖𝜕𝑡𝑣 = −
1

2
𝜕𝑥
2𝑣 + 𝑉𝐿𝑣, 𝑥 > 𝐿, 𝑡 > 0

𝑣 𝑥, 0 = 0

𝑣 𝐿, 𝑡 = Φ 𝑡 , 𝑡 > 0, Φ 0 = 0

𝑇𝐿Φ 𝑡 = 𝜕𝑥 𝑣 𝐿, 𝑡

𝑣 ∞, 𝑡 = 0

and analogously for 𝑇0.
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Transparent boundary conditions



The right TBC at 𝑥 = 𝐿:

The left TBC   at 𝑥 = 0 is obtained as

𝜕𝑥Ψ 𝑥 = 𝐿, 𝑡 = −
2

𝜋
𝑒−𝑖

𝜋
4𝑒−𝑖𝑉𝐿𝑡

𝑑

𝑑𝑡
න

0

𝑡
Ψ(𝐿, 𝜏)𝑒𝑖𝑉𝐿 𝜏

𝑡 − 𝜏
𝑑𝜏

𝜕𝑥Ψ 𝑥 = 0, 𝑡 = −
2

𝜋
𝑒−𝑖

𝜋
4
𝑑

𝑑𝑡
න

0

𝑡
Ψ(𝐿, 𝜏)

𝑡 − 𝜏
𝑑𝜏
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Transparent boundary conditions



Transparent quantum graphs

Time-dependent Schrödinger equation for star graph with 3 bonds (in units ℏ = 𝑚 = 1)

The coordinates assigned to bond   𝐵1 is   𝑥 ∈ (−∞; 0) and   𝐵1,2 are   𝑥 ∈ (0;∞).

𝑖𝜕𝑡Ψ𝑏 = −
1

2
𝜕𝑥
2Ψ𝑏, 𝑏 = 1,2,3
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Transparent quantum graphs

Kirchhoff-type boundary conditions

Continuity condition:

Current conservation condition:

𝛼1Ψ1 0, 𝑡 = 𝛼2Ψ2 0, 𝑡 = 𝛼3Ψ3(0, 𝑡)

1

𝛼1
𝜕𝑥Ψ1 𝑥 = 0, 𝑡 =

1

𝛼2
𝜕𝑥Ψ2 𝑥 = 0, 𝑡 +

1

𝛼3
𝜕𝑥Ψ3(𝑥 = 0, 𝑡)
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Interior problem for 𝐵1:

𝑖𝜕𝑡Ψ1 = −
1

2
𝜕𝑥
2Ψ1, 𝑥 < 0, 𝑡 > 0

Ψ1 𝑥, 0 = Ψ𝐼(𝑥)

𝜕𝑥Ψ1 0, 𝑡 = (𝑇+Ψ1)(0, 𝑡)
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Transparent quantum graphs



Exterior problems for 𝐵2,3:

𝑖𝜕𝑡Ψ2,3 = −
1

2
𝜕𝑥
2Ψ2,3, 𝑥 > 0, 𝑡 > 0

Ψ2,3 𝑥, 0 = 0

Ψ2,3 0, 𝑡 = Φ2,3 𝑡 , 𝑡 > 0, Φ2,3 0 = 0

𝑇+Ψ2,3 𝑡 = 𝜕𝑥Ψ2,3 0, 𝑡
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Transparent quantum graphs



Transparent vertex boundary 

conditions

At the vertex (𝑥 = 0) for bonds 𝐵2,3 using continuity VBC we get

𝜕𝑥 ෡Ψ2,3 𝑥 = 0, 𝑠 = −
+
−2𝑖𝑠

𝛼1
𝛼2,3

෡Ψ1(𝑥 = 0, 𝑠)

Laplace transformed Kirchhoff rule   (at 𝑥 = 0):

𝜕𝑥 ෡Ψ1 =
𝛼1
𝛼2

𝜕𝑥 ෡Ψ2 + ෡Ψ1 =
𝛼1
𝛼3

𝜕𝑥 ෡Ψ3 = −
+
−2𝑖𝑠𝛼1

2
1

𝛼2
2 +

1

𝛼2
2

෡Ψ1
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J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



This condition coincides with  transparent boundary condition (at 𝑥 = 0 ), when the factor    

𝛼1
2 1

𝛼2
2 +

1

𝛼3
2 is equal to one.

An inverse Laplace transformation yields the TBC at the vertex:

𝜕𝑥Ψ1 𝑥 = 0, 𝑡 = −
2

𝜋
𝑒−𝑖

𝜋
4𝛼1

2
1

𝛼2
2 +

1

𝛼3
2

𝑑

𝑑𝑡
න

0

𝑡
Ψ1(0, 𝜏)

𝑡 − 𝜏
𝑑𝜏
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Transparent vertex boundary 

conditions

MJ. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



1

𝛼1
2 =

1

𝛼2
2 +

1

𝛼3
2 .

Transparent quantum networks

Condition for transparency the continuity and current conservation:

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).
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Similarly, the results for B2 (B3) can be obtained considering exterior problems for 

𝐵1,3 (𝐵1,2):

𝜕𝑥Ψ2 𝑥 = 0, 𝑡 =
2

𝜋
𝑒−𝑖

𝜋
4𝛼2

2
1

𝛼1
2 +

1

𝛼3
2

𝑑

𝑑𝑡
න

0

𝑡
Ψ2(0, 𝜏)

𝑡 − 𝜏
𝑑𝜏

and

𝜕𝑥Ψ3 𝑥 = 0, 𝑡 =
2

𝜋
𝑒−𝑖

𝜋
4𝛼3

2
1

𝛼1
2 +

1

𝛼2
2

𝑑

𝑑𝑡
න

0

𝑡
Ψ3(0, 𝜏)

𝑡 − 𝜏
𝑑𝜏
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Transparent vertex boundary 

conditions



Transparent quantum graphs

Thus, in order to have transparent vertex boundary condition for 𝐵1 the following 

constraint must be fulfilled:

1

𝛼1
2 =

1

𝛼2
2 +

1

𝛼3
2

Similarly, the results for 𝐵2 (𝐵3):

1

𝛼2
2 =

1

𝛼1
2 +

1

𝛼3
2

1

𝛼3
2 =

1

𝛼1
2 +

1

𝛼2
2

and
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Transparent quantum graphs
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Dirac Particles in Transparent Quantum Graphs

𝑖𝜕𝑡𝜙𝑗 = −𝑖 𝜕𝑥𝜒𝑗 +𝑚𝜙𝑗 ,

𝛼1𝜙1(0, 𝑡) = 𝛼2𝜙2(0, 𝑡) = 𝛼3𝜙3(0, 𝑡),

1

𝛼1
𝜒1(0, 𝑡) =

1

𝛼2
𝜒2(0, 𝑡) +

1

𝛼3
𝜒3(0, 𝑡).

The Dirac equation (in unitis ℏ = 𝑐 = 1):

Vertex boundary conditions are imposed in the form of weighted wave 
functions continuity 

and generalized Kirchhoff rule  

𝑖𝜕𝑡𝜒𝑗 = −𝑖 𝜕𝑥𝜙𝑗 −𝑚𝜒𝑗 .

J. R. Yusupov, K. K. Sabirov, Q.U. Asadov, M. Ehrhardt, and D. U. Matrasulov, ArXiv:2004.07838 (To appear in PRE)



𝜒1(0, 𝑡) = 𝐴 [
𝑑

𝑑𝑡
0׬
𝑡
𝐼0 𝑚 𝑡 − 𝜏 𝜙1(0, 𝜏)𝑑𝜏 + 𝑖𝑚 0׬

𝑡
𝐼0 𝑚 𝑡 − 𝜏 𝜙1(0, 𝜏)𝑑𝜏],

1

𝛼1
2 =

1

𝛼2
2 +

1

𝛼3
2

where 𝐴1 = 𝛼1
2 𝛼2

−2 + 𝛼3
−2 и 𝐼0(𝑧) – Bessel’s function

Dirac Particles in Transparent Quantum Graphs

Sum rule:

Transparent boundary condition:

J. R. Yusupov, K. K. Sabirov, Q.U. Asadov, M. Ehrhardt, and D. U. Matrasulov, ArXiv:2004.07838 (To appear in PRE)



Dirac Particles in Transparent Quantum Graphs

The position probability density 𝜑𝑗 𝑥, 𝑡
2
+ 𝜒𝑗 𝑥, 𝑡

2
plotted at 

different time moments for the regime when the sum rule is fulfilled (no 

reflection occurred): 𝛼1 = 2/3, 𝛼2 = 1 and 𝛼3 = 2.

Dependence of the vertex reflection 
coefficient 𝑅 on the parameter 𝛼1 when the 

wave packet splitting time elapses (𝑡 = 10). 

For fixed 𝛼2 = 1 and 𝛼3 = 2, 𝑅 = 0 when 

𝛼1 = 2/3 ≈ 0.816 (red dot).



Summary

• The concept of Transparent boundary conditions is applied to

quantum graphs;

• Physically acceptable constraint for the reflectionless

transmission at the vertex is derived in the form of sum rule;

• Reflectionless transmission of solitons through the vertex of a star

graph is shown by solving the problem numerically;

• The approach can be directly extended to arbitrary graph

topologies.
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Outlook

• Transparent optical fiber networks;

• Ballistic (reflectionless) particle transport in branched

nanostrctures and nanoscale networks;

• Ballistic transport of charge carriers (e.g., excitons, 

polarons, solitons) in branched conducting polymers.

• Experimental realization in microwave networks
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