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SUMMARY
In a recent publication [1], we have obtained analytically expressions
for the equilibrium states and traveling wave solutions of:

The Heisenberg and 1+1 system in the form

~St = ~S × ~Sxx ,

and the Myrzakulov - I 2+1 spin system

~St = (~S × ~Sy + u~S)x , ux = −(~S, ~Sx × ~Sy ), ~S = (S1,S2,S3),

S2
1 + S2

2 + S2
3 = 1.

Here, we summarize these findings and also exhibit analogous
results for:
The Isotropic LLG Heisenberg system with Gilbert damping

~St = ~S × ~Sxx + λ(~Sxx − ~S · ~Sxx )~S)
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METHODS AND RESULTS

Regarding the steady states, which are time independent, we set
the LHS of these equations equal to zero, write our spin vector in
the form ~S = (u(x), v(x),w(x)), where u2 + v2 + w2 = 1, and
obtain systems of second order ODES in these variables.
In the cases of the Heisenberg and M - I spin systems, we show
that these equations can be directly solved by trigonometric
functions, while in others, we use the fact that they possess in
Painlevé property to also arrive at similarly simple solutions.

Seeking traveling wave solutions, we replace ~S(x , t) by ~S(x + µt)
and solve similar ODEs where the independent variable now is
ξ = x + µt , µ being the velocity of the wave.
To solve the isotropic LLG equation, we adopt a similar approach
and find simple curves on the unit sphere which represent stable
attractors since this equation involves Gilbert damping and is in
fact be equivalent to a damped NLS equation [4-5].
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Introduction

More than 50 years ago, it was discovered that there exist nonlinear
PDEs in 1+1 dimensions that are completely integrable, in the sense
that they are linearizable by the Inverse Scattering Transform and
Lax pair formalisms and possess infinitely many conservation laws [?].
Some of the most famous such equations were the Korteweg de Vries
(KdV) equation, the Modified KdV equation, the sine–Gordon and
the Nonlinear Schrödinger (NLS) equation.
In the late 1990’s, a new class of completely integrable spin models
emerged, mostly in 2+1 dimensions, to which the Inverse Scattering,
Lax pairs, Bäcklund transformations,N-soliton solutions, bilinear
forms, etc. could be applied [10-11]. Remarkably enough, all these
spin models, from Heisenberg ferromagnets to a new class of so–called
Myrzakulov equations were shown to be equivalent to PDE systems of
the NLS type [11-12].
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STEADY STATES OF THE HEISENBERG SPIN
SYSTEM

Setting ~St = 0 and using ~S = (u, v ,w) we obtain from (1) after one
integration the system of ODEs:

uv ′ − u′v = c1, uw ′ − u′w = c2, wv ′ − w ′v = c3, (1)

where the ci , i = 1,2,3 are arbitrary constants. Since these equations
are not independent, we combine them and obtain the condition

− c1w + c2v + c3u = 0. (2)

the above imply that the fixed points we are seeking lie on maximal
circles formed by the intersection of the sphere u2 + v2 + w2 = 1 and
the plane (2).
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In fact, it is possible to obtain a parametrization of these circles by a
single angular parameter. For example, let c2 = 0. Then, from (2) we
have that c1w = c3u, whence the sphere condition gives

u2 + v2 + (
c3

c1
)2 = 1, ⇒ v = ±

√
1− C2u2, C2 = 1 + (

c3

c1
)2. (3)

If we now set Cu = sinθ, we finally have:

u =
c1√

c2
1 + c2

3

sinθ, ⇒ v = cosθ, w =
c3√

c2
1 + c2

3

sinθ (4)

Thus, different curves of fixed points can been determined on the unit
sphere. These fixed points, of course, are not isolated and are linearly
stable upon small changes of their coordinates.
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TRAVELING WAVES OF THE HEISENBERG
SYSTEM

Assuming that our spin variables depend on the single wave variable
ξ = x + µt , ~S = (u, v ,w) now satisfies µ~S′ = (~S × ~S′)′, where primes
denote differentiation with respect to ξ and consequently after one
integration we get

vw ′−v ′w = µu+c1, −uw ′+u′w = µv +c2, uv ′−vu′ = µw +c3 (5)

Using spherical coordinates on the unit sphere:

u = cosθsinϕ, v = sinθsinϕ, w = cosϕ. (6)

we substitute in the above equations and after some manipulations we
arrive at the equations

ϕ′′ = (−c1cosθ − c2sinθ), θ′ = (
µ+ c3cosϕ

sinϕ
)(
µcosϕ+ c3

sin2ϕ
) = −dV

dϕ
(7)

These equations can be integrated explicitly to find the function V (ϕ).
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Hence the second integral that solves the system (7) is:

1
2
ϕ′2 + V (ϕ) = E = const .

Letting w = cosϕ allows us to finally show that

w = cosϕ = −c3µ/2E ± Asin(
√

2E(x + µt) + C) (8)

Solving the corresponding equation for sinθ(t) as follows:

sinθ =
c1A
√

2Ecos(η)± c2{(c2
1 + c2

2)sin2ϕ− 2EA2cos2(η)}1/2

(c2
1 + c2

2)sinϕ
(9)

we obtain it again in the form of a simple trigonometric function in
η =
√

2E(x + µt) + C.
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STEADY STATES FOR THE M − I SPIN SYSTEM

We write our unknown spin vector as
~S = (X ,Y ,Z ),X 2 + Y 2 + Z 2 = 1, where all variables are functions of
x , y , t . To find fixed points we must solve the equation
(~S × ~Sy + u~S)x = 0⇒ ~S × ~Sy + u~S = ~F (y) with F (Y ) arbitrary. For
simplicity we assume ~S = ~S(y),u = u(y) which implies that the
second M − I equation is automatically satisfied and set F = (1,1,1).
Defining u = Z

Y , v = X
Y to obtain the two equations

u′ + v ′ + v − u = u2 − v2, u′ − v ′ + v + u = 2 + (u − v)2. (10)

while introducing the new variables, S = u + v ,D = u − V finally
leads to single second order ODE:

D′′ = 3DD′ − 3D − D3 (11)

which can be shown to be completely integrable using the Painlevé
property [13] and is solved by simple trigonometric functions in y,
w = Acos

√
3y + Bsin

√
3y .
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We may now solve for Y from the expression:

1
2Y 2 (

E − Asinψ + Bcosψ
E

)2 +
1
2

A2 + B2

E2 = (12)

=
6C2 + A2 + B2

2E2 ⇒ Y = (
2
3

)1/2 ±E√
6C2 + A2 + B2

and finally obtain explicit expressions for X ,Z as well

Z = K (−(A + B
√

3)sinψ) + (B − A
√

3)cosψ + 2C
√

3

and
X = K (−(A− B

√
3)sinψ) + (B + A

√
3)cosψ + 2C

√
3

in terms of simple trigonometric functions, where K is the constant
K = ±1/

√
6√

6C2+A2+B2
.
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STEADY STATES FOR THE ISOTROPIC LLG
EQUATION

The Isotropic LLG equation for Heisenberg spins in the presence of
Gilbert damping [?] is

~St = ~S × ~Sxx + λ(~Sxx − ~S · ~Sxx )~S) (13)

where λ may be thought as a small parameter. We substitute again
here ~S = (u, v ,w) and with vecSt = 0 obtain the system

0 = vw ′′ − wv ′′ + λu′ − λu(uu′′ + vv ′′ + ww ′′)

0 = −uw ′′ + wu′′ + λv ′ − λv(uu′′ + vv ′′ + ww ′′)

0 = uv ′′ − vu′′ + λw ′ − λw(uu′′ + vv ′′ + ww ′′)

Note that this is a homogeneous system of linear equations for
u′′, v ′′,w ′′, which, for nontrivial solutions, requires that the associated
determinant vanish:

D = (λ− λ3)(u2v2 + v2w2 + u2w2 − u2v2w2) = 0 (14)
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This provides us with a necessary condition for nontrivial equilibrium
states of eq. (13) to exist:

u2v2 + v2w2 + u2w2 − u2v2w2 = 0 (15)

Now, we proceed to integrate the above system of equations for
u′′, v ′′,w ′′ and find, after some calculations that the solutions reduce
to the remarkably simple result v = Aw , A being an arbitrary
constant! Combining this (14) above leads to a family of curves of
fixed points, described in the u, v plane by the formula:

u2v2 = A2u2 + v2 (16)

These represent a family of hyperbolas in 3-dimensional space and the
steady states lie on their intersection with u2 + v2 + w2 = 1.
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TRAVELING WAVES FOR THE ISOTROPIC LLG
EQUATION

Finally, let us return to the original system of ODEs, for u, v ,w ,
which now become

µu′ = vw ′′ − wv ′′ + λu′ − λu(uu′′ + vv ′′ + ww ′′)

µv ′ = −uw ′′ + wu′′ + λv ′ − λv(uu′′ + vv ′′ + ww ′′)

µw ′ = uv ′′ − vu′′ + λw ′ − λw(uu′′ + vv ′′ + ww ′′)

where the derivatives now are w.r.t. ξ − x = µt , µ being the velocity
of the wave. Assuming that condition (14) does not hold, we solve
these equations as a linear system for u′′, v ′′,w ′′ and obtain

u′′ =
D1

D
, v ′′ =

D2

D
, v ′′ =

D3

D
, (17)

D1,D2,D3 being the usual Kramer 3x3 determinants of the system.
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The remarkably simple result that emerges after some tedious algebra
is:

u′′ = 0, v ′′ = 0, v ′′ = 0, (18)

Thus we arrive at the solutions:

u(ξ) = a1ξ + a2, v(ξ) = b1ξ + b2, w(ξ) = c1ξ + c2 (19)

for arbitrary constants ai ,bi , ci , i = 1,2. Combining these equations
yields a family of 3-dimensional planes

u + v + aw = b (20)

for arbitrary a,b, whose intersections with the unit sphere
u2 + v2 + w2 = 1 provide the location where traveling waves of the
LLG lie depending on the initial conditions.
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Conclusions and Outlook

For the Heisenberg spin system we found that the steady states
form sinusoidal curves on the unit sphere, while the traveling
waves are simple combinations of trigonometric functions of the
wave variable ξ = x + µt .
For the M - I 2+1 equations, we derived a class of steady states
that are given in terms of sines and cosines of the y variable.
The M - I traveling waves in one variable, are the same as those
of the Heisenberg case. However, if we seek M - I waves in two
variables, with different velocities in the x and y directions, we
arrive at linear PDEs, which possess a wide variety of solutions
depending on two arbitrary functions.
A similar analysis of the Heisenberg isotropic LLG spin system,
with Gilbert damping, leads to steady states and traveling waves
that form simple curves on the unit sphere. These curves
represent stable attractors, and would be interesting to
investigate further, in terms of their basin of attraction. They
also are independent of λ, except for the value λ = 1, which
needs further investigation.
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