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The quaternions, denoted by H, were first invented by W. R. Hamilton in 1843 as an extension of the complex numbers into four dimensions [5]. Algebraically speaking, H forms a division algebra (skew field) over R of dimension 4 ([5], p.195-196). Interestingly, several well-known theorems and algebraic properties do not hold in H. Most notably, the Fundamental Theorem of Algebra is not true over H. For example, the equation 
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1. Questions

(a) Solving equation in H is, in general, not an easy business. How to solve axa = b, (ax)b = c or ax2 + bx + c = 0 ? Are there any formulas to solve these? [9, 10]. 
(b) What other interesting properties fail in H? Consider for example the 2x2 quaternionic matrix 
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.  A is invertible, but 
[image: image5.wmf]det0

A

=

 ! Is there a way to restore this property? 
(c) The main feature of quaternions is that they model rotations in 3-d. Examine applications of H in Physics, Chemistry, Biology, Robotics, Animations, etc.
(d) Examine similar things, as in (a), (b) and (c), for the octionions O (i.e. the last of the four division algebras). 
In [2], we studied the finite ring
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, where p is a prime, looking into its structure and some of its properties. Interestingly, 
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 is not a division algebra. In another paper, we examined idempotent elements in 
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 and provided conditions for idempotency in 
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. For example, we proved the following:

Theorem: Let 
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. Then, x is idempotent if 
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Conditions for tripotency were given in [11]. 
2. Questions

(a) How many idempotents are there in 
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? This would involve finding how many ways 
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 can be written as a sum of three or fewer squares. The equation 
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 brings to mind the classical 'Sum of Three Squares Theorem' which was proved by Gauss in his Disquisitones Arithmeticae (S.291) in 1801. As that theorem says, an integer n can be the sum of three squares if and only if  
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.  So, clearly, when n = 7 one does not have solutions to the equation 
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. But, in our case (in this special 'modp' version), one does get solutions for p = 7 to the equation 
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. In particularly, (4, 1, 3, 4) is a solution and hence  x = 4 + i + 3j + 4k is an idempotent in 
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.  For example, for p = 31: (p2 – 1)/4 = 240 = 42(8.1 + 7), but 240 = 209 = 23mod31 = 82 + 92 + 82 (and the idempotent is 16+8i+9j +8k).  Finally, notice that 2+i+j is an idempotent in 
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, but (p2-1)/ 4 = (32-1) /4 = 2 is not the sum of three squares in 
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 is  p2 + p + 1. One could compute the number of tripotent elements in 
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(b) Another question is to examine nilpotent elements in 
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. Find conditions for nilpotency and the number of nilpotent elements in 
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. Also for square elements, as well as units in 
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. Regarding the units, recently in [4] it was shown that the number of zero-divisors is p3 + p2 – p, and also mentioned that the group of units has two generators. 

(c) A study of 
[image: image28.wmf]n

p

Z

H

/

. Is anything significantly different here than over 
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Also, the structure of 
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 in general, where n is not a prime.
(d) Another project is to look at the structure of 
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, where O is the octonionic division algebra, and discuss idempotent, nilpotent and tripotent elements in that finite ring. (for idempotent and nilpotents see [12]).
(e) Finally, examine applications of  
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. k-potent elements of the former and idempotent elements of the later found applications in cryptography. [13, 14]
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